Skip to main content
Log in

Somatic cell genetic analysis of transgenome integration

  • Published:
Somatic Cell Genetics

Abstract

The site of association of the human transgenome and host murine chromosomes was determined in several subclones of a stable human/mouse transformed cell line. Chromosomes were transferred from each of three transformed subclones into Chinese hamster recipient cells, and selection was applied for the expression of human transgenome-encoded HPRT. A series of trispecific microcell hybrids was isolated and characterized for each subclone. Evidence is presented that, within a given transformed subclone, only a single host (murine) chromosome was associated with the human transgenome. This contrasts with previous results which utilized a newly stabilized transformed cell line as the microcell donor and in which a variety of chromosomal sites of association existed. The results presented here support the view that the heterogeneity of transgenome association (integration) sites in newly stabilized transformants was due to the fact that these populations were multiclonal mixtures resulting from independent stabilization events. The initial heterogeneity in the population was subsequently reduced upon prolonged cultivation, as a subset of the original population became predominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. McBride, O. W., and Ozer, H. L. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:1258–1262.

    Google Scholar 

  2. Shani, M. E., Huberman, E., Aloni, Y., and Sachs, L. (1974).Virology 61:303–305.

    Google Scholar 

  3. Willecke, K., and Ruddle, F. H. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1792–1796.

    Google Scholar 

  4. Burch, J. W., and McBride, O. W. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1797–1801.

    Google Scholar 

  5. Wullems, G. J., Van der Horst, J., and Bootsma, D. (1975).Somat. Cell Genet. 1:137–152.

    Google Scholar 

  6. Degnen, G. E., Miller, I. L., Eisenstadt, J. M., and Adelberg, E. A. (1976).Proc. Natl. Acad. Sci. U.S.A. 73:2838–2842.

    Google Scholar 

  7. Miller, C., and Ruddle, F. H. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:3346–3350.

    Google Scholar 

  8. McBride, O. W., and Athwal, R. S. (1976).In Vitro 12:777–786.

    Google Scholar 

  9. Spandidos, D. A., and Siminovich, L. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:3480–3484.

    Google Scholar 

  10. Willecke, K., Lange, R., Kruger, A., and Reber, T. (1976).Proc. Natl. Acad. Sci. U.S.A. 73:1274–1278.

    Google Scholar 

  11. Wullems, G. J., Van der Horst, J., and Bootsma, D. (1977).Somat. Cell Genet. 3:281–293.

    Google Scholar 

  12. McBride, O. W., Burch, J. W., and Ruddle, F. H. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:914–918.

    Google Scholar 

  13. Athwal, R., and McBride, O. W. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:2943–2947.

    Google Scholar 

  14. Fournier, R. E. K., and Ruddle, F. H. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:3937–3941.

    Google Scholar 

  15. Fournier, R. E. K., and Ruddle, F. H. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:319–323.

    Google Scholar 

  16. Barile, M. F., Bodey, G. P., Snyder, J., Riggs, D. B., and Grabowski, M. W. (1966).J. Natl. Cancer Inst. 36:155–168.

    Google Scholar 

  17. Chen, T. R. (1977).Exp. Cell Res. 104:255–262.

    Google Scholar 

  18. Gillian, F. D., Roufa, D. J., Beaudet, A., and Caskey, C. T. (1972).Genetics 72:329–332.

    Google Scholar 

  19. Littlefield, J. W. (1966).Exp. Cell Res. 41:190–196.

    Google Scholar 

  20. Kozak, C. A., Lawrence, J. B., and Ruddle, F. H. (1977).Exp. Cell Res. 105:109–117.

    Google Scholar 

  21. Nichols, E. A., and Ruddle, F. H. (1973).J. Histochem. Cytochem. 21:1066–1081.

    Google Scholar 

  22. Peters, J., Hopkinson, D. A., and Harris, H. (1973).Ann. Hum. Genet. 56:297–312.

    Google Scholar 

  23. Nichols, E. A., and Ruddle, F. H. (1975).Biochem. Genet. 13:323–329.

    Google Scholar 

  24. Nichols, E. A., Elsevier, S. M., and Ruddle, F. H. (1974).Cytogenet. Cell Genet. 13:551–560.

    Google Scholar 

  25. Hopkinson, D. A., Mestringer, M. A., Cortner, J., and Harris, H. (1973).Ann. Hum. Genet. 37:119–128.

    Google Scholar 

  26. Klobutcher, L. A., Nichols, E. A., Kucherlapati, R. S., and Ruddle, F. H. (1976).Cytogenet. Cell Genet. 16:171–174.

    Google Scholar 

  27. Leinwand, L. A., Nichols, E. A., and Ruddle, F. H. (1978).Biochem. Genet. 16:659–666.

    Google Scholar 

  28. Womack, J. E., Davisson, M., Eicher, E., and Kendall, D. (1977).Biochem. Genet. 15:347–356.

    Google Scholar 

  29. Leinwand, L. A., Fournier, R. E. K., Nichols, E. A., and Ruddle, F. H. (1978).Cytogenet. Cell Genet. 21:77–85.

    Google Scholar 

  30. Francke, U., Lalley, P., Moss, W., Ivy, J., and Minna, J. (1977).Cytogenet. Cell Genet. 19:57–84.

    Google Scholar 

  31. Leinwand, L. A., Kozak, C. A., and Ruddle, F. H. (1978).Somat. Cell Genet. 4:233–240.

    Google Scholar 

  32. Smiley, J. R., Steege, D. A., Juricek, D. K., Summers, W., and Ruddle, F. H. (1978).Cell 15:455–468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, R.E.K., Juricek, D.K. & Ruddle, F.H. Somatic cell genetic analysis of transgenome integration. Somat Cell Mol Genet 5, 1061–1077 (1979). https://doi.org/10.1007/BF01542660

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01542660

Keywords

Navigation