Skip to main content
Log in

Studies on Chinese hamster ovary mutants showing multiple cross-resistance to oxidative phosphorylation inhibitors

  • Published:
Somatic Cell Genetics

Abstract

Several stable Chinese hamster ovary (CHO) mutants were selected after ethylmethane sulfonate mutagenesis for resistance to oligomycin, rutamycin, venturicidin, or antimycin. These mutants shared a number of common properties. They exhibited cross-resistance to those drugs which act on oxidative phosphorylation, irrespective of the structure and site of action of the drug. All the mutants showed a reduced ability to grow in suspension and to reach high saturation densities. They were also unable to use galactose as a carbon source. The short lag period required for selection (10–15 days), the similarity of the mutation rates for resistance to each of the four drugs, the high variance/mean ratios in fluctuation tests, and the recessive behavior of the resistance marker in hybrids suggest that the mutations responsible for resistance to oxidative phosphorylation inhibitors in CHO cells are coded by nuclear DNA. Segregation experiments indicated no linkage between the oligomycin-resistant marker (Olgr) and Thgr (thioguanine resistance). Oxidative phosphorylation, as measured by the rate of respiration coupled to phosphorylation in whole cells remained as sensitive to the drugs in the mutants as in the parental cell line. Glucose transport and the overall Krebs' cycle activities also appeared similar in the mutants and the wild type. All the mutants had an increased rate of lactic acid production (up to twofold), associated with increased specific activities for several glycolytic enzymes when assayed in cell-free extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Ephrussi, B., de Margerie-Hottinguer, H., and Roman, H. (1955).Proc. Natl. Acad. Sci. U.S.A. 41:1065–1071.

    Google Scholar 

  2. Lloyd, D. (1974). Inthe Mitochondria of Microorganisms, (Academic Press, New York), pp. 285–319.

    Google Scholar 

  3. Borst, P., and Grivell, L. A. (1978).Cell 15:705–723.

    Google Scholar 

  4. Birky, C. W. (1975). InGenetics and Biogenesis of Mitochondria and Chloroplasts, (eds.) Birky, C. W., Perlman, P. S., and Byers, T. J. (Ohio State University Press, Columbus), pp. 182–224.

    Google Scholar 

  5. Haddock, B. A., and Jones, C. W. (1977).Bacteriol. Rev. 41:47–99.

    Google Scholar 

  6. Birky, C. W. (1978).Annu. Rev. Genet. 12:471–512.

    Google Scholar 

  7. Gillham, N. W. (1974).Annu. Rev. Genet. 8:347–391.

    Google Scholar 

  8. Bolotin, M., Coen, D., Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., and Slonimsky, P. P. (1971).Bull. Inst. Pasteur. 69:215–239.

    Google Scholar 

  9. Poste, G., and Lyon, N. C. (1978). InCytochalasins, Biochemical and Cell Biological Aspects, (ed.) Tanenbaum, S. W. (North Holland Publishing Company, Amsterdam), pp. 161–189.

    Google Scholar 

  10. Spolsky, C. M., and Eisenstadt, J. M. (1972).FEBS Lett. 25:319–324.

    Google Scholar 

  11. Bunn, C. L., Wallace, D. C., and Eisenstadt, J. M. (1974).Proc. Natl. Acad. Sci. U.S.A. 71:1681–1685.

    Google Scholar 

  12. Wallace, D. C., and Freeman, K. B. (1975).J. Cell Biol. 65:492–498.

    Google Scholar 

  13. Mitchell, C., and Attardi, G. (1978).Somat. Cell Genet. 4:737–744.

    Google Scholar 

  14. Lichtor, T., and Getz, G. S. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:324–328.

    Google Scholar 

  15. Lichtor, T., Tung, B., and Getz, G. S. (1979).Biochemistry 18:2582–2590.

    Google Scholar 

  16. Morgan, H. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:5604–5608.

    Google Scholar 

  17. Wiseman, A., and Attardi, G. (1979).Somat. Cell Genet. 5:241–262.

    Google Scholar 

  18. Soderberg, K., Mascarello, J. T., Breen, G. A. M., and Schemer, I. E. (1979).Somat. Cell Genet. 5:225–240.

    Google Scholar 

  19. Scheffler, I. E. (1974).J. Cell. Physiol. 83:219–230.

    Google Scholar 

  20. De Francesco, L., Werntz, D., and Scheffler, I. E. (1975).J. Cell. Physiol. 85:293–306.

    Google Scholar 

  21. Ditta, G., Soderberg, K., Landy, F., and Scheffler, I. E. (1976).Somat. Cell Genet. 2:331–344.

    Google Scholar 

  22. Donnelly, M., and Scheffler, I. E. (1976).J. Cell. Physiol. 89:39–52.

    Google Scholar 

  23. De Francesco, L., Scheffler, I. E., and Bissel, M. J. (1976).J. Biol. Chem. 251:4588–4595.

    Google Scholar 

  24. Soderberg, K. L., Ditta, G. S., and Scheffler, I. E. (1977).Cell 10:697–702.

    Google Scholar 

  25. Ditta, G., Soderberg, K., and Scheffler, I. E. (1977).Nature 268:64–66.

    Google Scholar 

  26. Currie, W. D., and Gregg, C. T. (1965).Biochem. Biophys. Res. Commun. 21:9–15.

    Google Scholar 

  27. Lardy, H., Reed, P., and Lin, C. H. C. (1975).Fed. Proc. 34: 1707–1710.

    Google Scholar 

  28. De Pierre, J. W., and Ernster, L. (1977).Annu. Rev. Biochem. 46:201–262.

    Google Scholar 

  29. Sierra, M. F., and Tzagoloff, A. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:3155–3159.

    Google Scholar 

  30. Brufani, M., Cellai, L., Musu, C., and Keller-Schierlein, W. (1972).Helv. Chim. Acta 55:2329–2346.

    Google Scholar 

  31. Chance, B. (1958).J. Biol. Chem. 233:1223–1229.

    Google Scholar 

  32. Kao, F. T., and Puck, T. T. (1967).Genetics 55:513–524.

    Google Scholar 

  33. Worton, R. G., Ho, C. C., and Duff, C. (1977).Somat. Cell Genet. 3:27–45.

    Google Scholar 

  34. McBurney, M. W., and Whitmore, G. F. (1974).Cell 2:173–188.

    Google Scholar 

  35. Ling, V., and Thompson, L. H. (1974).J. Cell. Physiol. 83:103–116.

    Google Scholar 

  36. Bech-Hansen, N. T., Till, J. E., and Ling, V. (1976).J. Cell. Physiol. 88:23–31.

    Google Scholar 

  37. Gupta, R. S., and Simminovitch, L. (1978).Somat. Cell Genet. 4:715–735.

    Google Scholar 

  38. Stanners, C. P., Elieri, G. L., and Green, H. (1971).Nature (London), New Biol. 230:52–54.

    Google Scholar 

  39. Mauer, C., and Poppendiek, B. (1974). InMethods of Enzymatic Analysis, (ed.) Bergmeyer, H. S. (Verlag Chemie Weinheim, Academic Press, Inc., New York),3:1472–1475.

    Google Scholar 

  40. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193:265–275.

    Google Scholar 

  41. Wu, R., and Racker, E. (1959).J. Biol. Chem. 234:1029–1035.

    Google Scholar 

  42. Hsie, A. W., Jones, C., and Puck, T. T. (1971).Proc. Natl. Acad. Sci. U.S.A. 68:1648–1652.

    Google Scholar 

  43. Freedman, V. H., and Shin, S. (1974).Cell 3:355–359.

    Google Scholar 

  44. Marshall, L. E., and Himes, R. H. (1978).Biochem. Biophys. Acta 543:590–594.

    Google Scholar 

  45. Susa, J. B., and Lardy, H. A. (1975).Molec. Pharmacol. 11:166–173.

    Google Scholar 

  46. Freeman, K. B., and Holdar, D. (1968).Can. J. Biochem. 46:1003–1017.

    Google Scholar 

  47. Carlsen, S. A., Till, J. E., and Ling, V. (1976).Biochem. Biophys. Acta 455:900–912.

    Google Scholar 

  48. Ling, V., and Baker, R. M. (1978).Somat. Cell Genet. 4:193–200.

    Google Scholar 

  49. Luria, S. E., and Delbrück, M. (1943).Genetics 28:491–511.

    Google Scholar 

  50. Capizzi, R. L., and Jameson, J. W. (1973).Mutat. Res. 17:147–148.

    Google Scholar 

  51. Gupta, R. S., Chan, D. Y., and Siminovitch, L. (1978).Cell 14:1007–1013.

    Google Scholar 

  52. Campbell, C. E., and Worton, R. G. (1979).Somat. Cell Genet. 5:51–65.

    Google Scholar 

  53. Farrell, S. A., and Worton, R. G. (1977).Somat. Cell Genet. 3:539–551.

    Google Scholar 

  54. Rosenstraus, M., and Chasin, L. A. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:493–497.

    Google Scholar 

  55. Chasin, L. (1972).Nature (London), New Biol. 240:50–51.

    Google Scholar 

  56. Reed, L. J. (1969).Curr. Top. Cell. Regul. 1:233–251.

    Google Scholar 

  57. Barban, S., and Schulze, H. O. (1961).J. Biol. Chem. 236:1887–1890.

    Google Scholar 

  58. Barban, S. (1962).J. Biol. Chem. 237:291–295.

    Google Scholar 

  59. Ramaiah, A. (1974).Curr. Top. Cell. Regul. 8:297–345.

    Google Scholar 

  60. Pedersen, P. L. (1978).Prog. Exp. Tumor Res. 22:190–274.

    Google Scholar 

  61. Bogenhagen, D., and Clayton, D. A. (1974).J. Biol. Chem. 249:7991–7995.

    Google Scholar 

  62. Birky, C. W., Jr. (1973).Genetics 74:421–432.

    Google Scholar 

  63. Oliver, S. G. (1977).J. Theor. Biol. 67:195–201.

    Google Scholar 

  64. Sager, R. (1962).Proc. Natl. Acad. Sci. U.S.A. 48:2018–2026.

    Google Scholar 

  65. Bunn, C. L., Wallace, D. C., and Eisenstadt, J. M. (1977).Somat. Cell Genet. 3:71–92.

    Google Scholar 

  66. Rank, G. H., and Bech-Hansen, N. T. (1973).Mol. Gen. Genet. 126:93–102.

    Google Scholar 

  67. Colson, A. M., Goffeau, A., Briquet, M., Weigel, P., and Mattoon, J. R. (1974).Mol. Gen. Genet. 135: 309–326.

    Google Scholar 

  68. Guerineau, M., Slonimsky, P. P., and Auner, P. R. (1974).Biochem. Biophys. Res. Commun. 61:462–469.

    Google Scholar 

  69. Bruns, G. A. P., and Gerald, P. S. (1976).Science 192:54–56.

    Google Scholar 

  70. Siminovitch, L. (1976).Cell 7:1–11.

    Google Scholar 

  71. Reitzer, L. J., Wice, B. M., and Kennell, D. (1979).J. Biol. Chem. 254:2669–2676.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to dedicate this paper to Dr. Boris Ephrussi one of the founders of the field of somatic cell genetics. Many of the techniques, and more important, the concepts which prevail in this field can be laid to his seminal thinking on the subject. One of us (L.S.) in particular, owes a great deal to his personal stimulation and encouragement over a large number of years.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagarde, A.E., Siminovitch, L. Studies on Chinese hamster ovary mutants showing multiple cross-resistance to oxidative phosphorylation inhibitors. Somat Cell Mol Genet 5, 847–871 (1979). https://doi.org/10.1007/BF01542646

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01542646

Keywords

Navigation