Skip to main content
Log in

Theory for the laser-induced femtosecond phase transition of silicon and GaAS

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We analyze he femtosecond instability of the chamond lattice of silicon and GaAs, which is induced by a dense electron-hole plasma after excitation by a very imense laser pulse. We obtain that the electron-hole plasma causes an instability of both transverse acoustic and longitudinal optical phonons. So, within less than 200fs, the atoms are displaced more than 1 Å from their equilibrium position. The gap between the conduction and the valence band then vanishes and the symmetries of the diamond structure are destroyed, which has important effects on the optical reflectivity and second-harmonic generation. After that, the crystal melts very rapidly because of the high kinetic energy of the atoms. Note that mis is in good agreement with recent experiments done on Shand GaAs using a pump laser to excite a dense electron hole plasma and a probe laser to observe the resulting changes in the atomic and electronic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W.K. Tom, G.D. Aumiller, C.H. Brito-Cruz: Phys. Rev. Lett.60, 1438 (1988)

    Google Scholar 

  2. K. Sokolowski-Tinten, H. Schulz, J. Bialowski, D. von der Linde: Appl. Phys. A.53, 227 (1991)

    Google Scholar 

  3. C.V. Shank, R. Yen, C. Hirlimann: Phys. Rev. Lett51, 900 (1983)

    Google Scholar 

  4. P. Saeta, J.-K Wang, Y. Siegal, N. Bloembergen, E. Mazur: Phys. Rev. Lett.67, 1023 (1991)

    Google Scholar 

  5. S.V. Govorkov, T. Schroder, I.L. Shumay, P. Heist: Phys. Rev. B46, 6864 (1992)

    Google Scholar 

  6. S.V. Govorkov, V.I. Emelyanov, N.I. Koroteev, I.L. Shumay: J. Lumin53, 153 (1992)

    Google Scholar 

  7. S.V. Govorkov, I.L Shumay, W. Rudolph, T. Schroder: Opt. Lett.16, 1013 (1991)

    Google Scholar 

  8. P. Stampfli, K.H. Bennemann: Phys. Rev. B42, 7163 (1990)

    Google Scholar 

  9. P. Stampfli, K.H. Bennemann: Progr. Surf. Sci.35, 161 (1991)

    Google Scholar 

  10. P. Stampfli, K.H. Bennemann: Phys. Rev. B45, 10686 (1992)

    Google Scholar 

  11. P. Stampfli, K.H. Bennemann: Helv. Phys. Acta66, 897 (1994)

    Google Scholar 

  12. P. Stampfli, K.H. Bennemann: Phys. Rev. B49, 7299 (1994)

    Google Scholar 

  13. R.M. Martin: Phys. Rev.186, 871 (1969)

    Google Scholar 

  14. V. Heine, J.A. Van Vechten: Phys. Rev. B13, 1622 (1976)

    Google Scholar 

  15. M. Wautelet: Phys. Stat. Sol. (b)138, 447 (1986)

    Google Scholar 

  16. M. Wautelet, P.B. Legrand, P.M. Petropoulous: Surf. Sci.163, 230 (1985)

    Google Scholar 

  17. J. Bok: Phys. Lett. A.84, 448 (1981)

    Google Scholar 

  18. R. Biswas, V. Ambegaokar: Phys. Rev. B26, 1980 (1982)

    Google Scholar 

  19. C. KittelIntroduction to Solid State Physics (Wiley, New York 1953)

    Google Scholar 

  20. L. Kleinman: Phys. Rev.128, 2614 (1962)

    Google Scholar 

  21. W.A. Harrison:Electronic Structure and the Properties of Solids (Freeman, San Francisco 1980)

    Google Scholar 

  22. L. Rota, P. Lugli, T. Flsaesser, J. Shah: Phys. Rev. B47, 4226 (1993)

    Google Scholar 

  23. D.W. Snoke, W.W. Rühle, Y.-C. Lu, E. Bauser: Phys. Rev. Lett.68, 990 (1992)

    Google Scholar 

  24. D. Hulin, M. Combescot, J. Bok, A. Migus, J.Y Vinet, A. Antonetti: Phys. Rev. Lett.52, 1998 (1984)

    Google Scholar 

  25. W.H. Knox, D.S. Chemla, G. Livescu, J.E. Cunningham, J.E. Henry: Phys. Rev. Lett.61, 1290 (1988)

    Google Scholar 

  26. R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley: Phys. Rev. Lett.58, 1680 (1987)

    Google Scholar 

  27. S.D. Brorson, J.G. Fujimoto, E.P. Ippen: Phys. Rev. Lett59, 1962 (1987)

    Google Scholar 

  28. L.P. Kadanoff, G. Baym:Quantum Statistical Mechanics. (Benjamin, New York 1962) p. 54

    Google Scholar 

  29. J.A. Kash, J.C. Tsang, J.M. Hvam: Phys. Rev. Lett54, 2151 (1985)

    Google Scholar 

  30. A. Balderesci: Phys. Rev. B.7, 5212 (1973)

    Google Scholar 

  31. M. Van Schilfgaarde, A. Sher: Phys. Rev. B36, 4375 (1987)

    Google Scholar 

  32. D.J. Chadi: Phys. Rev. B20, 785 (1984)

    Google Scholar 

  33. H.B. Huntington: InSolid State Physics, ed. by F., Seitz, D. Turnbull, Vol. 7 (Academic, New York 1958)

    Google Scholar 

  34. G. Dolling: InInelastic Scattering of Neutrons in Solids and Liquids, Vol. II (Int'l Atomic Energy Agency, Vienna 1963) p. 37

    Google Scholar 

  35. O. Madelung (ed.):Semiconductors. Group IV Elements and III–V Compounds, Data Sci. Technol. (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stampfli, P., Bennemann, K.H. Theory for the laser-induced femtosecond phase transition of silicon and GaAS. Appl. Phys. A 60, 191–196 (1995). https://doi.org/10.1007/BF01538245

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538245

PACS

Navigation