Skip to main content
Log in

Interaction of intracellular electrolytes and tubular transport

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

To disclose possible regulatory mechanisms, the potential difference across the peritubular cell membrane (PDpt) and intracellular activities of sodium (Na +i ), potassium (K +i ), calcium (Ca 2+i ), bicarbonate (HCO 3i ) and chloride (Cl i ) have been traced continuously during inhibition of Na+/K+-ATPase with ouabain. Within 31±4 min following application of ouabain, PDpt decreases (from 57±2 mV) to half and K +i by 37.7±2.2 mmol/l (from 63.5±1.9 mmol/l), Na +i increases by 35.1±4.1 mmol/l (from 13.2±2.4 mmol/l), Ca 2+i by 0.17 ± 0.2 µmol/l (from 0.09 µmol/l), HCO 3i by 3.0±1.1 mmol/l (from 15.3±2.0 mmol/l) and Cl i by 6.2±1.0 mmol/l (from 14.4±1.6 mmol/l). Within the same time the luminal and peritubular cell membrane resistances increase 45±15% and 53±17%, respectively. The increase of the resistances is mainly due to a decrease of K+ conductance, which in turn mainly accounts for the depolarisation of PDpt. Additional experiments demonstrate that the K+ conductance of the peritubular cell membrane is sensitive to the cell membrane potential difference and possibly linked to Na+/K+-ATPase activity. The decline of PDpt probably accounts for intracellular alkalinisation which in turn reduces Na+/H+ exchange. Na+-coupled transport of glucose and phenylalanine decrease in linear proportion to PDpt. The transport of these and probably of similar substances represents the main threat to electrolyte homeostasis of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammann D, Lanter F, Steiner RA, Schulthess P, Shijo Y, Simon W (1981) Neutral carrier based hydrogen ion selective microelectrode for extra- and intracellular studies. Anal Chem 53:2267–2269

    PubMed  Google Scholar 

  2. Beck F, Bauer R, Bauer U, Mason J, Dörge A, Rick R, Thurau K (1980) Electron microprobe analysis of intracellular elements in the rat kidney. Kidney Int 17:756–763

    PubMed  Google Scholar 

  3. Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the proximal tubule of the salamander. J Gen Physiol 81:29–94

    PubMed  Google Scholar 

  4. Carafoli E (1982) Membrane transport of calcium. Academic Press, London New York

    Google Scholar 

  5. Edelman A, Bouthier M, Anagnostopoulos T (1981) Chloride distribution in the proximal convoluted tubule of Necturus kidney. J Membr Biol 62:7–17

    PubMed  Google Scholar 

  6. Ericson A-C, Spring KR (1982) Volume regulation by Necturus gallbladder: apical Na+-H+ and Cl-HCO 3 exchange. Am J Physiol 243:C146-C150

    PubMed  Google Scholar 

  7. Frömter E (1982) Electrophysiological analysis of rat renal sugar and amino acid transport. Pflügers Arch 393:179–189

    Google Scholar 

  8. Frömter E, Rumrich G, Ullrich KJ (1973) Phenomenologic description of Na+, Cl and IICO 3 absorption from proximal tubules of the rat kidney. Pflügers Arch 343:189–220

    Google Scholar 

  9. Fujimoto M, Kubota T (1976) Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids. Jpn J Physiol 26:631–650

    PubMed  Google Scholar 

  10. Garcia-Diaz JF, Nagel W, Essig A (1983) Voltage-dependent, Ca-activated K conductance at the apical membrane of necturus gallbladder. Biophys J (in press)

  11. Greger R, Schlatter E, Lang F (1983) Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflügers Arch 396:308–314

    Google Scholar 

  12. Guder WG, Wirthensohn G (1981) Renal turnover of substrates. In: Greger R, Lang F, Silbernagl S (eds) Renal transport of organic substances. Springer, Berlin Heidelberg New York, pp 66–77

    Google Scholar 

  13. Guggino WB, London R, Boulpaep EL, Giebisch G (1983) Chloride transport across the basolateral cell membrane of the Necturus proximal tubule: Dependence on bicarbonate and sodium. J Membr Biol 71:227–240

    PubMed  Google Scholar 

  14. Guggino WB, Boulpaep EL, Giebisch G (1982) Electrical properties of chloride transport across the Necturus proximal tubule. J Membr Biol 65:185–196

    PubMed  Google Scholar 

  15. Hille B (1978) Ionic channels in excitable membranes. Biophys J 22:283–294

    PubMed  Google Scholar 

  16. Hoshi T (1976) Electrophysiological studies on amino acid transport across the luminal membrane of the proximal tubular cells of Triturus kidney. In: Silbernagl S, Lang F, Greger R (eds) Amino acid transport and uric acid transport. Thieme, Stuttgart, pp 96–103

    Google Scholar 

  17. Kinne-Saffran E, Beauwens R, Kinne R (1982) An ATP-driven proton pump in brush-border membranes from rat renal cortex. J Membr Biol 64:67–76

    PubMed  Google Scholar 

  18. Kregenow FM (1981) Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media. Ann Rev Physiol 43:493–505

    Google Scholar 

  19. Lang F, Messner G, Wang W, Paulmichl M, Oberleithner H, Deetjen P (1983) The influence of intracellular sodium activity on the transport of glucose in proximal tubule of frog kidney. Pflügers Arch (in press)

  20. Lanter F, Steiner RA, Ammann D, Simon W (1982) Critical evaluation of the applicability of neutral carrier-based calcium selective microelectrodes. Anal Chim Acta 135:51–59

    Google Scholar 

  21. Latorre R, Miller C (1983) Conduction and selectivity in potassium channels. J Membr Biol 71:11–30

    PubMed  Google Scholar 

  22. Lewis SA, Wills NK (1980) Resistive artifacts in liquid-ion exchanger microelectrode estimates of Na+ activity in epithelial cells. Biophys J 31:127–138

    PubMed  Google Scholar 

  23. Loewenstein WR (1981) Junctional intercellular communication: The cell-to-cell membrane channel. Physiol Rev 61:829–913

    PubMed  Google Scholar 

  24. Mason J, Beck F, Dörge A, Rick R, Thurau K (1981) Intracellular electrolyte composition following renal ischemia. Kidney Int 20:61–70

    PubMed  Google Scholar 

  25. Matsumura Y, Cohen B, Guggino WB, Giebisch G (1983) Electrical effects of potassium and bicarbonate on proximal tubule cells of Necturus. J Membr Biol (submitted)

  26. Matsumura Y, Cohen B, Guggino WB, Giebisch G (1983) Regulation of the basolateral potassium conductance of the Necturus proximal tubule. J Membr Biol (submitted)

  27. Messner G, Paulmichl M, Oberleithner H, Lang F (1983) On the mechanism of ouabain-induced inhibition of phenylalanine transport in proximal tubules of frog kidneys. J Membr Biol (submitted)

  28. Murer H, Burckhardt G (1983) Membrane transport of anions across epithelia of mammalian small intestine and kidney proximal tubule. Rev Physiol Biochem Pharmacol 96:2–51

    Google Scholar 

  29. Oberleithner H, Giebisch G, Lang F, Wang W (1982) Cellular mechanism of the furosemide sensitive transport system in the kidney. Klin Wochenschr 60:1173–1179

    PubMed  Google Scholar 

  30. O'Regan MG, Malnic G, Giebisch G (1982) Cell pH and luminal acidification in Necturus proximal tubule. J Membr Biol 69:99–106

    PubMed  Google Scholar 

  31. Pfaller W (1982) Structure function correlation on rat kidney. Adv Anat Embryol Cell Biol 70:1–106

    PubMed  Google Scholar 

  32. Rasmussen H (1981) Calcium and cAMP as synarchic messengers. Wiley & Sons, New York

    Google Scholar 

  33. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    PubMed  Google Scholar 

  34. Samarzija I, Hinton BT, Frömter E (1982) Electrophysiological analysis of rat renal sugar and amino acid transport. II.–V. Pflügers Arch 393:190–221

    Google Scholar 

  35. Schultz SG (1981) Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by “flush-through”. Am J Physiol 241:F579-F590

    PubMed  Google Scholar 

  36. Silbernagl S (1979) Renal transport of amino acids. Klin Wochenschr 57:1009–1019

    PubMed  Google Scholar 

  37. Spring KR, Kimura G (1978) Chloride reabsorption by renal proximal tubules of Necturus. J Membr Biol 38:233–254

    PubMed  Google Scholar 

  38. Ullrich KJ (1979) Sugar, amino acid, and Na+ cotransport in the proximal tubule. Ann Rev Physiol 41:181–195

    Google Scholar 

  39. Ullrich KJ, Capasso G, Rumrich G, Papavassiliou F, Klöss S (1977) Coupling between proximal tubular transport processes. Studies with ouabain, SITS and HCO 3 -free solutions. Pflügers Arch 368:245–252

    Google Scholar 

  40. Ullrich KJ, Rumrich G, Klöss S (1974) Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pflügers Arch 351:35–48

    Google Scholar 

  41. Ullrich KJ, Rumrich G, Klöss S (1974) Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney. Pflügers Arch 351:49–60

    Google Scholar 

  42. Wang W, Messner G, Oberleithner H, Lang F (1983) The effect of ouabain on intracellular activities of K+, Na+, Cl, H+ and Ca2+ in proximal tubules of frog kidneys. Pflügers Arch (submitted)

  43. Wang W, Oberleithner H, Lang F (1983) The effect of cAMP on the cell membrane potential and intracellular ion activities in proximal tubule of rana esculenta. Pflügers Arch 396:192–198

    Google Scholar 

  44. Windhager EE, Taylor A (1983) Regulatory role of intracellular calcium ions in epithelial Na transport. Ann Rev Physiol 45:519–532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Österreichischer Fond zur Förderung der wissenschaftlichen Forschung, grant no. 4366

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, F., Messner, G., Wang, W. et al. Interaction of intracellular electrolytes and tubular transport. Klin Wochenschr 61, 1029–1037 (1983). https://doi.org/10.1007/BF01537501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01537501

Key words

Navigation