Skip to main content
Log in

Cloning of a functional human adenine phosphoribosyltransferase (APRT) gene: Identification of a restriction fragment length polymorphism and preliminary analysis of DNAs from APRT-deficient families and cell mutants

  • Published:
Somatic Cell and Molecular Genetics

Abstract

A complete human APRT gene has been isolated from a lambda phage genomic library using cloned mouse APRT DNA as a probe. The human gene, contained in a recombinant lambda phage designated λHuap15, is functional by virtue of its capacity to transfer human APRT activity to Aprt mouse recipient cells after phage-mediated transfection. Digestion of λHuap15 DNA with BamH1 generated a 2.2-kb fragment that is the only fragment of eight produced to hybridize with the mouse APRT gene. This 2.2-kb BamH1 fragment is a unique, single copy sequence, and has been used to identify a restriction fragment length polymorphism (RFLP) associated with the APRT locus. Taq1 digestion and Southern blot analysis of DNAs from 49 unrelated individuals produced three different patterns. DNAs of 30 individuals produced a restriction pattern of three labeled fragments about 500 bp, 600 bp, and 2.1 kb in size, which is characteristic for individuals homozygous for the more common allele. Two individuals homozygous for the less frequent allele displayed labeled fragments of 500 bp and 2.7 kb. The remaining 17 DNA samples produced all four labeled bands as expected for heterozygous individuals. The frequency of heterozygotes in the population is about 35%, while the frequency of the less common allele is about 0.21. Restriction enzyme analysis of DNAs from two APRT-deficient brothers and from an unrelated heterozygote revealed no gross deletions or rearrangements, nor the Taq1 polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Atkins, J.H., and Gartler, S.M. (1968).Genetics 60:781–787.

    PubMed  Google Scholar 

  2. Chasin, L.A. (1974).Cell 2:37–41.

    PubMed  Google Scholar 

  3. Jones, G.E., and Sargeant, P.A. (1974).Cell 2:43–54.

    PubMed  Google Scholar 

  4. Dickerman, L.H., and Tischfield, J.A. (1978).Mutat. Res. 49:83–94.

    PubMed  Google Scholar 

  5. Thompson, L.H., Fong, S., and Brookman, K. (1980).Mutat. Res. 74:21–36.

    PubMed  Google Scholar 

  6. Adair, G.M., Carrier, J.H., and Wandres, D.L. (1980).Mutat. Res. 72:187–205.

    PubMed  Google Scholar 

  7. Tischfield, J.A., Trill, J.J., Lee, Y.I., Coy, K., and Taylor, M.W. (1982).Mol. Cell Biol. 2:250–257.

    PubMed  Google Scholar 

  8. Rappaport, H., and Demars, R. (1973).Genetics 75:335–345.

    PubMed  Google Scholar 

  9. Spector, E.B., Hershfield, M.S., and Seegmiller, J.E. (1978).Somat. Cell Genet. 4:253–264.

    PubMed  Google Scholar 

  10. Steglich, C., and DeMars, R. (1982).Somat. Cell Genet. 8:115–141.

    PubMed  Google Scholar 

  11. Tischfield, J.A., and Ruddle, F.H. (1974).Proc. Natl. Acad. Sci. U.S.A. 71:45–49.

    PubMed  Google Scholar 

  12. Simmonds, H.A., and Van Acker, K.J. (1983). InThe Metabolic Basis of Inherited Disease, 5th ed, (eds.) Stanbury, J.B., Wyngaarden, J.B., Fredrickson, D.S., Goldstein, J.L., and Brown, M.S. (McGraw-Hill, New York), pp. 1144–1183.

    Google Scholar 

  13. Lowy, I., Pellicer, A., Jackson, J.F., Sim, G.-K., Silverstein, S., and Axel, R. (1980).Cell 22:817–823.

    PubMed  Google Scholar 

  14. Sikela, J.M., Khan, S.A., Feliciano, E., Trill, J., Tischfield, J.A., and Stambrook, P.J. (1983).Gene 22:219–228.

    PubMed  Google Scholar 

  15. Trill, J., Tischfield, J.A., Dush, M., and Stambrook, P.J. (1983).J. Cell Biol. 97:134a.

    Google Scholar 

  16. NIGMS Human Genetic Mutant Cell Respository. (1983). Catalog of Cell Lines. U.S. Department of Health and Human Services.

  17. VanAcker, K.J., Simmonds, H.A., Potter, C., and Cameron, J.S. (1977).N. Engl. J. Med. 297:127–132.

    PubMed  Google Scholar 

  18. Rasheed, S., Nelson-Rees, W.A., Toth, E.M., Arnstein, P., and Gardner, M.B. (1974).Cancer 33:1027–1033.

    PubMed  Google Scholar 

  19. Harris, M. (1961).J. Natl. Cancer Inst. 26:13–18.

    PubMed  Google Scholar 

  20. Stambrook, P.J., and J.E. Sisken. (1972).Biochim. Biophys. Acta 281:45–54.

    PubMed  Google Scholar 

  21. Maniatis, T., Hardison, R.C., Lacy, E., Lauer, J., O'Connell, Quon, D., Sim, D.K., and Efstradiatis, A. (1978).Cell 15:687–701.

    PubMed  Google Scholar 

  22. Benton, W.D., and Davis, R.W. (1977).Science 196:180–182.

    PubMed  Google Scholar 

  23. Rigby, P.W.J., Diekman, M., Rhodes, C., and Berg, P. (1977).J. Mol. Biol. 113:237–246.

    PubMed  Google Scholar 

  24. Denhardt, D.T. (1966).Biochem. Biophys. Res. Commun. 23:641–646.

    PubMed  Google Scholar 

  25. Ishiura, M., Hirose, S., Ucido, T., Hamado, Y., Suzuki, T., and Okado, Y. (1982).Mol. Cell. Biol. 2:607–616.

    PubMed  Google Scholar 

  26. Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982). InMolecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, p. 368.

    Google Scholar 

  27. Stambrook, P.J. (1974).J. Mol. Biol. 82:303–313.

    PubMed  Google Scholar 

  28. Southern, E.M. (1975).J. Mol. Biol. 98:503–517.

    PubMed  Google Scholar 

  29. Tischfield, J.A., Bernhard, H.P., and Ruddle, F.H. (1977).Anal. Biochem. 53:545–554.

    Google Scholar 

  30. Kozak, C.E., E. Nichols, and Ruddle, F.H. (1975).Somat. Cell Genet. 1:371–382.

    PubMed  Google Scholar 

  31. Adair, G.M., Stallings, R.L., Friend, K.K., and Siciliano, M.J. (1983).Somat. Cell Genet. 19:477–487.

    Google Scholar 

  32. Wigler, M., Pellicer, A., Silverstein, S., Axel, R., Urlaub, G., and Chasin, L. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:1371–1376.

    Google Scholar 

  33. Lester, S.C., LeVan, S.K., Steglich, C., and DeMars, R. (1980).Somat. Cell Genet. 16:241–259.

    Google Scholar 

  34. Simon, A.E., Taylor, M.W., and Bradley, W.E.C. (1983).Mol. Cell Biol. 3:1703–1710.

    PubMed  Google Scholar 

  35. Taylor, M.W., and Hershey, H.V. (1979).Adv. Exp. Med. and Biol. (eds.) Rapado, A., Watts, R.W.E., and DeBruyn, C.H.M.M.122:103–109.

  36. Tischfield, J.A., Jourgensen, D.R., and Trill, J.J. (1981).J. Cell Biol. 91:388a.

    Google Scholar 

  37. Thomas, C.B., Arnold, W.J., and Kelley, W.N. (1973).J. Biol. Chem. 248:2529–2535.

    PubMed  Google Scholar 

  38. Holden, J.A., Meredith, G.S., and Kelley, W.N. (1979).J. Biol. Chem. 254:6951–6955.

    PubMed  Google Scholar 

  39. Barker, D., Schafer, M., and White, R. (1984).Cell 36:131–138.

    PubMed  Google Scholar 

  40. Shows, T.B., Sakaguchi, A.Y., and Naylor, S.L. (1982).Adv. Hum. Genet. 12:341–452.

    PubMed  Google Scholar 

  41. Coulondre, C., Miller, J.H., Farabaugh, P.J., and Gilbert, W. (1978).Nature 274:775–780.

    PubMed  Google Scholar 

  42. Mowbray, S., Watson, B., and Harris, H. (1972).Ann. Hum. Genet. London 36:153–162.

    Google Scholar 

  43. Botstein, D., White, R.L., Skolnick, M., and Davis, R.W. (1980).Am. J. Hum. Genet. 32:314–331.

    PubMed  Google Scholar 

  44. Solomon, E., and Goodfellow, P. (1983).Nature 306:223–224.

    PubMed  Google Scholar 

  45. Ferguson-Smith, M.A., and Cox, D.R. (1984).Cytogenet. Cell Genet. 37:129.

    Google Scholar 

  46. Miller, O.J., Drayna, D., and Goodfellow, P. (1984).Cytogenet. Cell Genet. 37:176–181.

    PubMed  Google Scholar 

  47. Wilson, J.M., Daddona, D.E., Simmonds, H.A., Van Acker, K.J., and Kelley, W.N. (1982).J. Biol. Chem. 257:1508–1515.

    PubMed  Google Scholar 

  48. Nalbarotoglu, J., Goncalves, O., and Meuth, M. (1983).J. Mol. Biol. 167:575–594.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stambrook, P.J., Dush, M.K., Trill, J.J. et al. Cloning of a functional human adenine phosphoribosyltransferase (APRT) gene: Identification of a restriction fragment length polymorphism and preliminary analysis of DNAs from APRT-deficient families and cell mutants. Somat Cell Mol Genet 10, 359–367 (1984). https://doi.org/10.1007/BF01535631

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01535631

Keywords

Navigation