Skip to main content
Log in

Enhancement of DNA repair capacity of mammalian cells by carcinogen treatment

  • Published:
Somatic Cell and Molecular Genetics

Abstract

To determine whether DNA excision repair is enhanced in mammalian cells in response to DNA damage, as it is in bacteria as part of the SOS response, we used an expression vector-host cell reactivation assay to measure cellular DNA repair capacity. When UV-damaged chloramphenicol acetyltransferase (CAT) vector DNA was introduced into monkey cells (CV-1), the level of CAT activity was inversely related to the UV fluence due to inhibition ofcat gene expression by UV photoproducts. When CV-1 cells were treated with either UV radiation or mitomycin C, 24–48 h before transfection, CAT expression from the UV-irradiated plasmid was increased. This increase also occurred in a line of normal human cells, but not in repair-deficient human xeroderma pigmentosum cells. We confirmed that this increase in CAT expression was due to repair, and not to production of damage-free templates by recombination; the frequency of generation of supF+ recombinants after transfection with UV-irradiated pZ189 vectors carrying different point mutations in the supF gene did not significantly increase in carcinogen-treated CV-1 cells. From these results we conclude that carcinogen treatment enhances the excision-repair capacity of normal mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Bishop, J.M. (1983).Cell 32:1018–1020.

    PubMed  Google Scholar 

  2. Santos, E., Reddy, E.P., Pulciani, S., Feldman, R.J., and Barbacid, M. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:4679–4683.

    PubMed  Google Scholar 

  3. Friedberg, E.C. (1985).DNA Repair, (W.H. Freeman, New York).

    Google Scholar 

  4. Hall, J.D., and Mount, D.W. (1981).Prog. Nucleic Acid Res. Mol. Biol. 25:53–126.

    PubMed  Google Scholar 

  5. Hays, J.B., and Lee, E. (1985).Mol. Gen. Genet. 201:402–408.

    PubMed  Google Scholar 

  6. Walker, G.C. (1985).Annu. Rev. Biochem. 54:425–457.

    PubMed  Google Scholar 

  7. Walker, G.C. (1984).Microbiol. Rev. 48:60–93.

    PubMed  Google Scholar 

  8. Witkin, E.M. (1976).Bacteriol. Rev. 40:869–907.

    PubMed  Google Scholar 

  9. Bockstahler, L.E. (1981).Prog. Nucleic Acid Res. Mol. Biol. 26:303–313.

    PubMed  Google Scholar 

  10. Radman, M. (1980).Photochem. Photobiol. 32:823–830.

    PubMed  Google Scholar 

  11. Sarasin, A.R., and Hanawalt, P.C. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:346–350.

    PubMed  Google Scholar 

  12. Schorpp, M., Mallick, U., Rahmsdorf, H.J., and Herrlich, P. (1984).Cell 37:861–868.

    PubMed  Google Scholar 

  13. Sauerbier, W., and Hercules, K. (1978).Annu. Rev. Genet. 12:329–363.

    PubMed  Google Scholar 

  14. Ali, R., and Sauerbier, W. (1979).Biophys. J. 22:393–411.

    Google Scholar 

  15. Protić-Sabljić, M., and Kraemer, K.H. (1985).Proc. Natl. Acad. Sci. U.S.A. 82:6622–6626.

    PubMed  Google Scholar 

  16. Lehman, A.R., and Oomen, A. (1985).Nucleic Acid Res. 13:2087–2095.

    PubMed  Google Scholar 

  17. Klocker, H., Schneider, R., Burtscher, H., Auer, B., Hirsch-Kauffmann, M., and Schweiger, M. (1985).Eur. J. Cell. Biol. 39:346–351.

    Google Scholar 

  18. Gorman, C.M., Moffat, L.F., and Howard, B.H. (1982).Mol. Cell. Biol. 2:1044–1051.

    PubMed  Google Scholar 

  19. Kraemer, K.H., Protić-Sabljić, M., Bredberg, A., and Seidman, M.M. (1987).Curr. Probl. Dermatol.,17:166–181.

    PubMed  Google Scholar 

  20. Seidman, M.M., Dixon, K., Razzaque, A., Zagursky, R., and Berman, M.L. (1985).Gene 38:233–237.

    PubMed  Google Scholar 

  21. Hauser, J., Scidman, M.M., Sidur, K., and Dixon, K. (1986).Mol. Cell. Biol. 6:277–285.

    PubMed  Google Scholar 

  22. Sarasin, A,. and Benoit, A. (1986).Mol. Cell. Biol. 6:1102–1107.

    PubMed  Google Scholar 

  23. Defais, M.J., Hanawalt, P.C., and Sarasin, A.R. (1983).Adv. Radiat. Biol. 10:1–37.

    Google Scholar 

  24. Maga, J.A., and Dixon, K. (1984).Photochem. Photobiol. 40:473–478.

    PubMed  Google Scholar 

  25. Abrahams, P.J., Huitema, B.A., and van der Eb, A.J. (1984).Mol. Cell. Biol. 4:2341–2346.

    PubMed  Google Scholar 

  26. Lytle, C.D., Day, R.S., III, Hellman, K.B., and Bockstahler, L.E. (1976).Mutat. Res. 36:257–264.

    PubMed  Google Scholar 

  27. Ryan, D.K.G., and Rainbow, A.J. (1986).Mutat. Res. 166:99–111.

    PubMed  Google Scholar 

  28. Subramani, S., and Berg, P. (1983).Mol. Cell. Biol. 3:1040–1052.

    PubMed  Google Scholar 

  29. Elespuru, R.K. (1987).Environ. Mol. Mutagen. 10:97–116.

    PubMed  Google Scholar 

  30. Tyrrell, R.M. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:781–784.

    PubMed  Google Scholar 

  31. Moustacchi, E., Ehmann, U.K., and Friedberg, E. (1979).Mutat. Res. 62:159–171.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Protić, M., Roilides, E., Levine, A.S. et al. Enhancement of DNA repair capacity of mammalian cells by carcinogen treatment. Somat Cell Mol Genet 14, 351–357 (1988). https://doi.org/10.1007/BF01534643

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534643

Keywords

Navigation