Skip to main content
Log in

Differentiation of human osteoblastic cells in culture

Modulation of proteases by extracellular matrix and tumor necrosis factor-alpha

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

We have followed the synthesis and secretion of urokinase-type plasminogen activator (u-PA) and its inhibitor, PAI-1, and matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMP-1) during differentiation of a human osteoblastic cell line, HOS TE85, and the effect of TNF-α on this process. Our results show that the ratio of u-PA/PAI-1 associated with the cell-matrix components increases during differentiation of these cells over a 14-day period. Although TNF-α suppresses the induced increase in steady-state mRNA levels of u-PA and PAI-1 during maturation of extracellular matrix (ECM), the u-PA/PAI-1 ratio is altered in such a way that PA activity associated with the ECM is higher than control cells. The expression of MMP-1 is low and remains essentially invariant over a culture period of 14 days. TNF-α enhances MMP-1 transcription nearly 12-fold initially, after which mRNA levels drop off but remain significantly higher than the controls. Activities and steady-state mRNA levels of MMP-2 and MMP-9 increase nearly 15-fold during maturation of the ECM, but the level of TIMP-1 mRNA is not appreciably altered. The presence of TNF-α suppresses maturation-induced transcription of MMP-2, enhances TIMP-1 transcription, but has little effect on MMP-9 mRNA levels. The data show that chronic exposure to TNF-α alters the balance between u-PA/PAI- 1 and MMPs/TIMP-1, which favors higher activity of proteinases. Accordingly, the presence of TNF-α in chronic inflammatory episodes would be expected to alter bone remodeling by inhibiting maturation of ECM and formation of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peck, W.A., S.J. Birge, andS.A. Fedak. 1964. Bone cells: biochemical and biological studies after enzymatic isolation.Science 146:1476–1477.

    PubMed  Google Scholar 

  2. Binderman, W.A., D. Duskin, A. Harell, E. Katzir, andL. Sachs. 1974. Formation of bone tissue in culture from isolated bone cells.J. Cell Biol. 61:426–439.

    Google Scholar 

  3. Nefussi, J.-R., M.L. Boy-Lefevre, H. Boulekbache, andN. Forest. 1985. Mineralization in vitro of matrix formed by osteoblasts isolated by collagenase digestion.Differentiation 29:160–168.

    PubMed  Google Scholar 

  4. Bellows, C.G., J.E. Aubin, J.N.M. Heersche, andM.E. Antosz. 1986. Mineralized bone nodules formed in vitro from enzymatically released rat calvarial cell populations.Calcif. Tissue Int. 38:143–154.

    PubMed  Google Scholar 

  5. Simmons, D. J., G.N. Kent, R.L. Jilka, D.M. Scott, M. Fallon, andD.V. Cohn. 1982. Formation of bone by isolated, cultured osteoblasts in millipore diffusion chambers.Calcif. Tissue Int. 34:291–294.

    PubMed  Google Scholar 

  6. Gerstenfeld, L.C., S.D. Chipman, C.M. Kelley, K.J. Hodgens, D.D. Lee, andW.J. Landis. 1988. Collagen expression, ultrastructural assembly, and mineralization in cultures of chicken embryo osteoblasts.J. Cell Biol. 106:979–989.

    PubMed  Google Scholar 

  7. Whitson, S.W., M.A. Whitson, D.E. Bowers, Jr., andM.C. Falk. 1992. Factors influencing synthesis and mineralization of bone matrix from fetal bovine bone cells grown in vitro.J. Bone Min. Res. 7:727–741.

    Google Scholar 

  8. Robey, R.G., andJ.D. Termine. 1985. Human bone cells in vitro.Calcif. Tissue Int. 37:453–460.

    PubMed  Google Scholar 

  9. Partridge, N.C., D. Alcorn, V.P. Michelangeli, B.E. Kemp, G.B. Ryan, andT.J. Martin. 1981. Functional properties of hormonally responsive cultured normal and malignant rat osteoblastic cells.Endocrinology 108:213–219.

    PubMed  Google Scholar 

  10. Kodama, H., Y. Amagai, H. Sudo, S. Kasai, andS. Yamamoto. 1981. Establishment of a clonal osteogenic cell line from newborn mouse calvaria.Jpn. J. Oral. Biol. 23:899–901.

    Google Scholar 

  11. Sudo, H., H. Kodama, Y. Amagai, S. Yamamoto, andS. Kasai. 1983. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria.J. Cell Biol. 96:191–198.

    PubMed  Google Scholar 

  12. Walters, M.R., D.M. Rosen, A.W. Norman, andR.A. Luben. 1982. 1,25-Dihydroxyvitamin D receptors in an established bone cell line.J. Biol. Chem. 257:7481–7484.

    PubMed  Google Scholar 

  13. Canalis, E. 1985. Effect of growth factors on bone cell replication and differentiation.Clin. Orthop. 193:246–263.

    PubMed  Google Scholar 

  14. Canalis, E., T. McCarthy, andM. Centrella. 1988. Growth factors and the regulation of bone remodelling.J. Clin. Invest. 81:277–281.

    PubMed  Google Scholar 

  15. Noda, M., andG.A. Rodan. 1987. Typeβ transforming growth factor (TGFβ) regulation of alkaline phosphatase expression and other phenotype-related mRNAs in osteoblastic rat osteosarcoma cells.J. Cell. Physiol. 133:426–437.

    PubMed  Google Scholar 

  16. Sato, K., Y. Fujii, K. Kasono, M. Ozawa, H. Imamura, Y. Kanaji, H. Kurosawa, T. Tsushima, andK. Shizume. 1989. Parathyroid hormone-related protein and interleukin-1β synergistically stimulate bone resorption in vitro and increase the serum calcium concentration of mice in vivo.Endocrinology 124:2172–2178.

    PubMed  Google Scholar 

  17. Spencer, E.M., C.C. Liu, E.C. Si, andG.A. Howard. 1991. In vivo actions of insulin-like growth factor I (IGF-I) on bone formation and resorption in rats.Bone 12:21–26.

    PubMed  Google Scholar 

  18. Hauschka, P.V. Growth factor effects in bone.In The Osteoblast and the Osteocyte, Bone Vol. 1. B.K.Hall, editor. The Telford Press, Caldwell, New Jersey 103–170.

  19. Goldhaber, P., L. Rabajija, W.R. Beyer, andA. Kornhauser. 1973. Bone resorption in tissue culture and its relevance to periodontal disease.J. Am. Dent. Assoc. 87:1027–1033.

    PubMed  Google Scholar 

  20. El Attar, T.M.A., andH.S. Lin. 1983. Relative conversion of arachidonic acid through lipoxygenase and cyclooxygenase pathways by homogenates of diseased periodontal tissues.J. Oral Pathol. 12:7–14.

    PubMed  Google Scholar 

  21. Decker, J.L. 1984. Rheumatoid arthritis: Evolving concepts of pathogenesis and treatment.Ann Intern. Med. 101:810–824.

    PubMed  Google Scholar 

  22. Meikle, M.D., J.K. Heath, andJ.J. Reynolds. 1986. Advances in understanding cell interactions in tissue resorption. Relevance to the pathogenesis of periodontal disease and a new hypothesis.J. Oral Pathol. 15:239–250.

    PubMed  Google Scholar 

  23. Bertolini, D.R., G.E. Nedwin, T.S. Brinoham, D.D. Smith, andG.R. Mundy. 1986. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factor.Nature 319:516–518.

    PubMed  Google Scholar 

  24. Vaes, G. 1988. Cellular biology and bichemical mechanisms of bone resorption.Clin Orthop. Rel. Res. 231:239–272.

    Google Scholar 

  25. Stashenko, P., M.S. Obernesser, andF.E. Dewhirst. 1989. Effects of immune cytokines on bone.Immunol. Invest. 145:239–249.

    Google Scholar 

  26. Le, L., andJ. Vilcek. 1987. Tumor necrosis factor and Interleukin-1: Cytokines with multiple overlapping biological activities.Lab. Invest. 56:234–248.

    PubMed  Google Scholar 

  27. Rosenblum, M.G., andN.J. Donato. 1989. Tumor necrosis factorα: A multifaceted peptide hormone.Crit. Rev. Immunol. 9:21–44.

    PubMed  Google Scholar 

  28. Canalis, E. 1987. Effects of tumor necrosis factor on bone formation in vitro.Endocrinology 121:1596–1604.

    PubMed  Google Scholar 

  29. Stashenko, P., F.E., Dewhirst, W.J. Peros, R.L. Kent, andJ.M. Ago. 1987. Synergistic interactions between interleukin 1, tumor necrosis factor, and lymphotoxin in bone resorption.J. Immunol. 138:1464–1468.

    PubMed  Google Scholar 

  30. Thomson, B.M., G.R. Mundy, andT.J. Chambers. 1987. Tumor necrosis factorα andβ induce osteoblastic cells to stimulate osteoclastic bone resorption.J. Immunol. 138:775–779.

    PubMed  Google Scholar 

  31. Panagakos, F.S., andS. Kumar. 1992. TNF modulation of bone formation and bone resorption in vitro.J. Dent. Res. 71:149.

    Google Scholar 

  32. Panagakos, F.S., L. Hinojosa, andS. Kumar. 1993. Matrix formation and mineralization by osteoblasts: Modulation by TNF-alpha.J. Dent. Res. 72:289.

    Google Scholar 

  33. Panagakos, F.S., L. Hinojosa, andS. Kumar. 1994. Formation and mineralization of extracellular matrix secreted by an immortal human osteoblastic cell line: Modulation by tumor necrosis factor-α.Inflammation 18:267–284.

    PubMed  Google Scholar 

  34. Panagakos, F.S., andS. Kumar. 1994. Modulation of proteases and their inhibitors in immortal human osteoblast-like cells by tumor necrosis factor-alpha in vitro.Inflammation 18:243–265.

    PubMed  Google Scholar 

  35. Jones, P.A., J.S. Rhim, H. Issacs, andR.M. McAlister. 1975. Relationship between tumoigenicity, growth, in agar, and fibrinolytic activity in a line of human osteosarcoma cells.Int. J. Cancer 16:616–621.

    PubMed  Google Scholar 

  36. Lowry, O.H., N.J. Rosebrough, A.L. Farr, andR.J. Randall. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–274.

    PubMed  Google Scholar 

  37. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227:680–685.

    PubMed  Google Scholar 

  38. Chomczynski, P., andN. Sacchi. 1989. Single-step method of RNA isolation by guanidinium thiocyanate-phenol-chloroform extraction.Anal. Biochem. 163:156–162.

    Google Scholar 

  39. Stein, G.S., J.B. Lian, andT.A. Owen. 1990. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation.FASEB J. 4:3111–3123.

    PubMed  Google Scholar 

  40. Stein, G.S., J.B. Lian, L. Gerstenfeld, V. Shaloub, M. Aronow, T. Owen, andE. Markose. 1989. The onset and progression of osteoblast differentiation is functionally related to cell proliferation.Connect. Tissue Res. 20:3–13.

    PubMed  Google Scholar 

  41. Carrington, J.L., A.B. Roberts, K.C. Flanders, N.S. Roche, andA.H. Reddi. 1988. Accumulation, localization, and compartmentation of transforming growth factor-β during endochondral bone development.J. Cell Biol. 107:1969–1975.

    PubMed  Google Scholar 

  42. Glimcher, M.J. 1989. Mechanism of calcification in bone: role of collagen fibrils and collagen phosphoprotein complexes.Anat. Rec. 224:139–153.

    PubMed  Google Scholar 

  43. Lian, J.B., M.C. Coutts, andE. Canalis. 1985. Studies of hormonal regulation of osteocalcin synthesis in cultured fetal rat calvaria.J. Biol. Chem. 260:8706–8710.

    PubMed  Google Scholar 

  44. Heingard, D., andA. Oldberg. 1989. Structure and biology of cartilage and bone matrix noncollagenous macromolecules.FASEB J. 3:2042–2051.

    PubMed  Google Scholar 

  45. Johansen, J.S., M.K. Williamson, J.S. Rice, andP.A. Price. 1992. Identification of proteins secreted by human osteoblastic cells in culture.J. Bone. Min. Res. 7:501–512.

    Google Scholar 

  46. Hamilton, J.A., S.R. Lingelbach, N.C. Partridge, andT.J. Martin. 1985. Regulation of plasminogen activator production by bone resorbing hormones in normal and malignant osteoblasts.Endocrinology 116:2186–2191.

    PubMed  Google Scholar 

  47. Partridge, N.C., J.J. Jeffrey, L.S. Ehlich, S.L. Teitelbaum, C. Fliszar, H.C. Welgus, andA.J. Kahn. 1987. Hormonal regulation of the production of collagenease and a collagenase inhibitor activity by rat osteogenic sarcoma cells.Endocrinology 120:1956–1961.

    PubMed  Google Scholar 

  48. Hill, P.A., J.J. Reynolds, andM.C. Meikle. 1993. Inhibition of stimulated bone resorption in vitro by TIMP-1 and TIMP-2.Biochim. Biophys. Ada 1177:71–74.

    Google Scholar 

  49. Heath, J.K., S.J. Atkinson, M.C. Meikle, andJ.J. Reynolds. 1984. Mouse osteoblasts synthesize collagenase in response to bone resorbing agents.Biochim. Biophys. Ada 802:151–154.

    Google Scholar 

  50. Sakamoto, M., andS. Sakamoto. 1984. Immunocytochemical localization of collagenase in isolated mouse bone cells.Biomed. Res. 5:29–36.

    Google Scholar 

  51. Delaisse, J-M., Y. Eechhout, C. Sear, A. Galloway, K. McCullagh, andG. Vaes. 1985. A new synthetic inhibitor of mammalian collagenase inhibits bone resorption in culture.Biochem. Biophys. Res. Commun. 133:483–490.

    PubMed  Google Scholar 

  52. Eeckhout, Y., J.-M. Delaisse, andG. Vaes. 1986. Direct extraction and assay of bone tissue collagenase and its relation to parathyroid-hormone-induced bone resorption.Biochem. J. 239:793–796.

    PubMed  Google Scholar 

  53. Everts, V., J.-M. Delaisse, W. Korper, A. Niehof, G. Vaes, andW. Beertsen. 1992. Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases.J. Cell. Physiol. 150:221–231.

    PubMed  Google Scholar 

  54. Brown, P.D., D.E. Kleiner, E.J. Unsworth, andW.G. Stetler-Stevenson. 1993. Cellular activation of the 72 kDa type IV procollagenase-TIMP-2 complex.Kidney Int. 43:163–170.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panagakos, F.S., Kumar, S. Differentiation of human osteoblastic cells in culture. Inflammation 19, 423–443 (1995). https://doi.org/10.1007/BF01534577

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534577

Keywords

Navigation