Skip to main content
Log in

Studies on inhibition of neutrophil cathepsin G byα 1-antichymotrypsin

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

α 1-Antichymotrypsin, a member of the serpin family of serine proteinase inhibitors, has been reported to inhibit chymotrypsin by a modified version of the suicide substrate reaction mechanism operative for other serpins. To investigate if this mechanism is also applicable to the inhibition of cathepsin G by this serpin, the effect of temperature on the reaction between cathepsin G andα 1-antichymotrypsin has been examined by SDS-PAGE and stoichiometric titrations. At 0° C, a cathepsin G-α 1-antichymotrypsin complex of Mr 89,250 is formed which, at 38° C, was cleaved by free enzyme to give a stable complex of Mr 80,250. The reaction stoichiometry at 0°C was 1.53, which decreased to 1.30 at 38°C, consistent with an decrease in the substrate pathway. These data are compatible with the modified suicide substrate reaction scheme. The formation of three products (cleaved inhibitor and two forms of complex) from the reaction and the potential for differential product formation suggests that modulation of the suicide substrate mechanism may play a role in the regulation of inflammatory processes mediated by cathepsin G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rest, R. F. 1988. Human neutrophil and mast cell proteases implicated in inflammation.Methods Enzymol. 163:309–327.

    PubMed  Google Scholar 

  2. Capodici, C., andR. A. Berg. 1989. Cathepsin G degrades denatured collagen.Inflammation 13:137–145.

    PubMed  Google Scholar 

  3. Capodici, C., G. Muthukumaran, M. A. Amoruso, andR. A. Berg. 1989. Activation of neutrophil collagenase by cathepsin G.Inflammation 13:245–258.

    PubMed  Google Scholar 

  4. Kubes, P., R. Smith, M. D. Grisham, andD. N. Granger. 1993. Neutrophil-mediated proteolysis. Differential roles for cathepsin G and elastase.Inflammation 17:321–332.

    PubMed  Google Scholar 

  5. Bao, J.-J., R. N. Sifers, V. J. Kidd, F. D. Ledley, andS. L. C. Woo. 1987. Molecular evolution of serpins: Homologous structure of the humanα 1-antichymotrypsin andα 1-antitrypsin genes.Biochemistry 26:7755–7759.

    PubMed  Google Scholar 

  6. Beatty, K., J. Bieth, andJ. Travis. 1980. Kinetics of association of serine proteinases with native and oxidizedα-1-proteinase inhibitor andα-1-antichymotrypsin.J. Biol. Chem. 255:3931–3934.

    PubMed  Google Scholar 

  7. Schechter, N. M., J. L. Sprows, O. L. Schoenberger, G. S. Lazarus, B. S. Cooperman, andH. Rubin. 1989. Reaction of human skin chymotrypsin-like proteinase chymase with plasma proteinase inhibitors.J. Biol. Chem. 264:21308–21315.

    PubMed  Google Scholar 

  8. Rubin, H., Z. M. Wang, E. Nickbarg, S., McLarney, N. Naidoo, O. L. Schoenberger, J. L. Johnson, andB. S. Cooperman. 1990. Cloning, expression, purification, and biological activity of recombinant native and variant human α1-antichymotrypsins.J. Biol. Chem. 265:1199–1207.

    PubMed  Google Scholar 

  9. Cooperman, B. S., E. Stavridi, E. Nickbarg, E. Rescorla, N. M. Schechter, andH. Rubin. 1993. Antichymotrypsin interaction with chymotrypsin: Partitioning of the complex.J. Biol. Chem. 268:23616–23625.

    PubMed  Google Scholar 

  10. Schechter, N. M., L. M. Jordan, A. M. James, B. S. Cooperman, Z. M. Wang, andH. Rubin. 1993. Reaction of human chymase with reactive site variants of α1-antichymotrypsin: Modulation of inhibitor versus substrate properties.J. Biol. Chem. 268:23626–23633.

    PubMed  Google Scholar 

  11. Björk, I., K. Nordling, I. Larsson, andS. T. Olson. 1992. Kinetic characterization of the substrate reaction between a complex of antithrombin with a synthetic reactive-bond loop tetradecpeptide and four target proteinases of the inhibitor.J. Biol. Chem. 26:19047–19050.

    Google Scholar 

  12. Patston, P. A., P. Gettins, J. Beechem, andM. Schapira. 1991. Mechanism of serpin action: Evidence that C1-inhibitor functions as a suicide substrate.Biochemistry 30:8876–8882.

    PubMed  Google Scholar 

  13. Hopkins, P. C. R., R. W. Carrell, andS. R. Stone. 1993. Effects of mutations in the hinge region of serpins.Biochemistry 32:7650–7657.

    PubMed  Google Scholar 

  14. Waley, S. G. 1985. Kinetics of suicide substrates: Practical procedures for determining parameters.Biochem. J. 227:843–849.

    PubMed  Google Scholar 

  15. Gettins, P. G. W., P. A. Patston, andM. Schapira. 1993. The role of conformational change in serpin structure and function.BioEssays 15:461–467.

    PubMed  Google Scholar 

  16. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227:680–685.

    PubMed  Google Scholar 

  17. Laine, A., M. Davril, andA. Hayem. 1982. Interaction between human serumα 1,-antichymotrypsin and human leukocyte cathepsin G: Complex formation and production of a modified inhibitor.Biochem. Biophys. Res. Commun. 105:186–193.

    PubMed  Google Scholar 

  18. Kurdowska, A., andJ. Travis. 1990. Acute phase protein stimulation byα 1-antichymotrypsin-cathepsin G complexes: Evidence for the involvement of interleukin-6.J. Biol. Chem. 265:21023–21026.

    PubMed  Google Scholar 

  19. Schuster, M. G., P. M. Enriquez, P. Curran, B. S. Cooperman, andH. Rubin. 1992. Regulation of neutrophil superoxide by antichymotrypsin-chymotrypsin complexes.J. Biol. Chem. 267:5056–5059.

    PubMed  Google Scholar 

  20. Potempa, J., D. Fedak, A. Dubin, A. Mast, andJ. Travis. 1991. Proteolytic inactivation ofα-1-chymotrypsin: Sites of cleavage and generation of chemotactic activity.J. Biol. Chem. 266:21482–21487.

    PubMed  Google Scholar 

  21. Perlmutter, D. H., G. I. Glover, M. Rivetna, C. S. Schasteen, andR. J. Fallon. 1990. Identification of a serpin-enzyme complex receptor on human hepatoma cells and human monocytes.Proc. Natl. Acad. Sci. U.S.A. 87:3753–3757.

    PubMed  Google Scholar 

  22. Joslin, G., A. Wittwer, S. P. Adams, D. M. Tollefsen, A. August, andD. H. Perlmutter. 1993. Cross-competition for binding ofα 1-antitrypsin (α 1-AT)-elastase complexes to the serpin-enzyme complex receptor by other serpin-enzyme complexes and by proteolytically modifiedα 1-AT.J. Biol. Chem. 268:1886–1893.

    PubMed  Google Scholar 

  23. Patston, P. A., R. L. Medcalf, Y. Kourteva, andM. Schapira. 1993. C1-inhibitor-serine proteinase complexes and the biosynthesis of C1-inhibitor by Hep G2 and U 937 cells.Blood 82:3371–3379.

    PubMed  Google Scholar 

  24. Patston, P. A., P. G. W. Gettins, andM. Schapira, 1994. Serpins are suicide substrates: Implications for the regulation of proteolytic pathways.Semin. Thromb. Hemost. 20:410–416.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by National Institutes of Health grant HL-49242.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patston, P.A. Studies on inhibition of neutrophil cathepsin G byα 1-antichymotrypsin. Inflammation 19, 75–81 (1995). https://doi.org/10.1007/BF01534382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534382

Keywords

Navigation