Skip to main content
Log in

Viscoelastic properties of pathological synovial fluids for a wide range of oscillatory shear rates and frequencies

  • Original Contributions · Originalarbeiten
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

A series of pathological synovial fluids are examined for viscoelastic properties in oscillatory shear flow at frequencies of physiological significance. When tested at varying amplitudes of shear at a frequency of 2 Hertz, the fluids show marked nonlinearity for shear rates above 10 sec−1, the elastic component of the shear stress truncating in the range from 1 to 10 dynes/cm2. At low shear rates, the fluids are linear and viscoelastic and have frequency dispersions matching the character of Gaussian chain theory for polymer solutions. Enzymatic degradation of the hyaluronate destroys the viscoelasticity, leaving a Newtonian fluid of relatively low viscosity. The concentration and molecular weight of the hyaluronate produce substantial intermolecular interaction. The relaxation times, viscosity, and elasticity of the synovial fluids are greatly increased over values expected for noninteracting molecules of hyaluronic acid in solution. While both the viscosity and elasticity vary greatly among the pathological fluids, the elasticity is the more sensitive indicator of viscoelastic properties.

Zusammenfassung

Es wird eine Serie pathologischer Synovialflüssigkeiten bezüglich ihrer viskoelastischen Eigenschaften in einer oszillatorischen Scherströmung mit physiologisch signifikanten Frequenzen untersucht. Bei einer Frequenz von 2 Hz zeigen die Flüssigkeiten eine ausgeprägte Nichtlinearität, wenn ein rms-Wert von 10 s−1 überschritten wird: Die elastische Komponente der Schubspannung flacht im Bereich von 1–10 dyn/cm2 ab. Bei niedrigen Schergeschwindigkeiten verhalten sich die Flüssigkeiten dagegen linear-viskoelastisch, und ihre Frequenzabhängigkeit läßt sich durch die Theorie der Gaußschen Netzwerk-Lösungen beschreiben. Enzymatischer Abbau des Hyaluronats zerstört die Viskoelastizität, so daß eine newtonsche Flüssigkeit mit relativ niedriger Viskosität übrig bleibt. Infolge seiner Konzentration und seines Molekulargewichts unterliegt das Hyaluronat einer erheblichen intermolekularen Wechselwirkung. Relaxationszeiten, Viskosität und Elastizität zeigen erheblich größere Werte, als sie für nicht in Wechselwirkung stehende Hyaluronsäure-Moleküle in Lösung zu erwarten wären. Obgleich bei den verschiedenen pathologischen Flüssigkeiten sowohl die Viskosität als auch die Elastizität stark schwanken, stellt sich doch die Elastizität als der von den viskoelastischen Eigenschaften empfindlichere Indikator heraus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Tube radius (cm)

b :

Gaussian chain segment length (cm)

c m :

Mass concentration (g/cm3)

f :

Frequency (Hz)

G * :

Complex shear rigidity (dynes/cm2)

h * :

Hydrodynamic interaction factor for the Gaussian chain theory

k :

Boltzmann's constant (ergs/deg)

M :

Molecular weight

N :

Number of Gaussian subchain segments

N a :

Avogadro's number

P * :

Pressure gradient, complex form (dynes/cm3)

P′, P″ :

Real and imaginary parts ofP * (dynes/cm3)

t :

Time (sec)

T :

Absolute temperature (K)

u :

Volume rate of flow (cm3/sec)

\(\tilde \dot \gamma \) :

Shear rate, instantaneous value (sec−1)

\(\dot \gamma _M \) :

Shear rate, amplitude (sec−1)

\(\dot \gamma _{NL} \) :

Critical shear rate for onset of nonlinearity (sec−1)

λ p :

Eigenvalue,p-th value

η * :

Complex coefficient of viscosity (P)

η v :

Viscosity, real part ofη * (P)

η E :

Elasticity, imaginary part ofη * (P)

η 0 :

Limiting viscosity at zero frequency (P)

η s :

Viscosity of solvent (P)

η :

Limiting viscosity at infinite frequency (P)

[η]0 :

Intrinsic viscosity at zero frequency (cm3/g)

φ :

Phase angle between shear rate and shear stress (rad)

(Φ/f′):

Gaussian chain theory parameter

\(\tilde \tau \) :

Shear stress, instantaneous value (dynes/cm2)

τ M :

Shear stress, amplitude (dynes/cm2)

τ * :

Shear stress, complex form (dynes/cm2)

τ v :

Viscous component of the shear stress (dynes/cm2)

τ E :

Elastic component of the shear stress (dynes/cm2)

τ p :

Relaxation time,p-th value (sec)

τ 1 :

Terminal (longest) relaxation time (sec)

ω :

Radian frequency (rad/sec)

References

  1. Scott Blair, G. W. An Introduction to Biorheology, (Elsevier Scientific Publishing Company, Amsterdam 1974) (see Chapt. VIII).

    Google Scholar 

  2. Dowson, D. Modes of lubrication in human joints, Proc. Instn. Mech. Engrs.181, pt. 3F, paper 12 (1966–67).

    Google Scholar 

  3. Seller, P. C., D. Dowson, V. Wright The rheology of synovial fluid, Rheol. Acta10, 2–7 (1971).

    Google Scholar 

  4. Ferguson, J., J. A. Boyle, R. N. W. McSween, M. K. Jasani Observations on the flow properties of the synovial fluid from patients with rheumatoid arthritis, Biorheology5, 119–131 (1968).

    Google Scholar 

  5. Block, B., L. Dintenfass Rheological study of human synovial fluid, Aust. N.Z.J. Surg.33, 108–113 (1963).

    Google Scholar 

  6. Meyer, K., E. M. Smyth, M. H. Dawson The isolation of mucopolysaccharide from synovial fluid, J. Biol. Chem.128, 319–327 (1939).

    Google Scholar 

  7. Ogston, A. G., J. E. Stanier The physiological function of hyaluronic acid in synovial fluid; viscous, elastic, and lubricant properties, J. Physiol.119, 244–252 (1953).

    Google Scholar 

  8. Stafford, C. T., W. Niedermeier, H. L. Holley, W. Pigmon Studies on the concentration and intrinsic viscosity of hyaluronic acid in synovial fluids for patients with rheumatic diseases, Ann. Rheum. Dis.23, 152–157 (1964).

    Google Scholar 

  9. Cleland, R. L., J. L. Wang Ionic polysaccharides III. Dilute solution properties of hyaluronic acid fractions, Biopolymers9, 799–810 (1970).

    Google Scholar 

  10. de Belder, A. N., K. O. Wilk Preparation and properties of fluorescein-labelled hyaluronate, Carbohydrate Res.44, 251–257 (1975).

    Google Scholar 

  11. Darke, A., E. G. Finer, R. Moorhouse, D. A. Rees Studies of hyaluronate solutions by nuclear magnetic relaxation measurements, J. Mol. Biol.99, 477–486 (1975).

    Google Scholar 

  12. Winter, W. T., P. J. C. Smith, S. Arnott Hyaluronic acid: Structure of a fully extended 3-fold helical sodium salt and comparison with the less extended 4-fold helical forms, J. Mol. Biol.99, 219–235 (1975).

    Google Scholar 

  13. Ogston, A. G., J. E. Stanier Some effects of hyaluronidase on the hyaluronic acid of ox synovial fluid, and their bearing on the investigation of pathological fluids, J. Physiol.119, 253–258 (1953).

    Google Scholar 

  14. Greiling, H., H. W. Stuhlsutz, T. Eberhard, A. Eberhard Studies on the mechanism of hyaluronate lyase action, Conn. Tissue Res.3, 135–139 (1975).

    Google Scholar 

  15. Poortmans, J. R., J. S'Jongers, G. Bidon Distribution of plasma proteins and hyaluronic acid in synovial fluid and serum of human subjects in hydarthrosis, Clinica Chimica Acta55, 205–209 (1974).

    Google Scholar 

  16. Greiling, H. Biorheological properties and the proteo hyaluronate content of synovial fluid, Biopolymer und Biomechanik von Bindegewebssystemen, (Springer-Verlag, Berlin-Heidelberg-New York 1974), see pp. 311–316.

    Google Scholar 

  17. Nuki, G., J. Ferguson Studies of the nature and significance of macromolecular complexes in rheology of synovial fluid from normal and diseased human joints, Rheol. Acta10, 8–14 (1971).

    Google Scholar 

  18. Ogston, A. G., J. E. Stanier, B. A. Toms, D. J. Strawbridge Elastic properties of ox synovial fluid, Nature, Lond.165, 571 (1950).

    Google Scholar 

  19. Myers, R. R., S. Negami, R. K. White Dynamic mechanical properties of synovial fluid, Biorheology3, 197–209 (1966).

    Google Scholar 

  20. Gibbs, D. A., E. W. Merrill, K. A. Smith Rheology of hyaluronic acid, Biopolymers6, 777–791 (1968).

    Google Scholar 

  21. Fredrich, J. E., N. W. Tschoegl, J. D. Ferry Dynamic mechanical properties of dilute polystyrene solutions, J. Physic. Chem.68, 1974–1982 (1964).

    Google Scholar 

  22. Thurston, G. B. Molecular weight dependence of viscoelastic properties of polystyrene solutions, J. Chem. Phys.47, 3582–3588 (1967).

    Google Scholar 

  23. Mow, V. C. The role of lubrication in biomechanical joints, Transactions of the ASME, J. Lubrication Technol.91, 320–328 (1969).

    Google Scholar 

  24. Dintenfass, L. Lubrication in synovial joints, J. Bone Joint Surgery45A, 1241–1256 (1963).

    Google Scholar 

  25. Tanner, R. I. An alternative mechanism for the lubrication of synovial joints, Phys. Med. Biol.11, 119–127 (1966).

    Google Scholar 

  26. Mow, V. C. Effects of viscoelastic lubricants on squeeze-film lubrication between impinging spheres, Trans. ASME, Journal of Lubrication Technology90, 113–116 (1968).

    Google Scholar 

  27. Phelps, C. F., E. D. T. Atkins Biopolymere und Biomechanik von Bindegewebssystemen, ed.F. Hartmann (Springer-Verlag, Berlin-Heidelberg-New York 1975), p. 317.

    Google Scholar 

  28. Sundblad, L. Determination of anomalous viscosity in pathological joint fluids, Scand. J. Clin. Lab. Invest.6, 288–294 (1954).

    Google Scholar 

  29. Sundblad, L. The Amino Sugars, Vol. IIa, ed.E. A. Balazs andR. W. Jeanloz Academic Press, New York and London (1965), p. 230.

    Google Scholar 

  30. Swann, D. A., E. L. Radin The molecular basis of articular lubrication, J. Biol. Chem.247, 8069–8073 (1972).

    Google Scholar 

  31. Thurston, G. B. The effects of frequency of oscillatory flow on the impedance of rigid bloodfilled tubes, Biorheology13, 194–199 (1976).

    Google Scholar 

  32. Thurston, G. B. Theory of oscillation of a viscoelastic fluid in a circular tube, J. Acoust. Soc. Amer.32, 210–213 (1960).

    Google Scholar 

  33. Thurston, G. B. Elastic effects in pulsatile blood flow, Microvascular Res.9, 145–157 (1975).

    Google Scholar 

  34. Philippoff, W. Vibrational measurements with large amplitudes, Trans. Soc. Rheology10, 317–334 (1966).

    Google Scholar 

  35. Peterlin, A. Viscosity of polymers, Macromolecular Science, Physical Chemistry Series 1, Vol. 8, ed. by C. E. H. Bawn, Butterworth, London (1972).

    Google Scholar 

  36. Thurston, G. B. Frequency and shear rate dependence of viscoelasticity of human blood, Biorheology10, 375–381 (1973).

    Google Scholar 

  37. Thurston, G. B., A. Peterlin Influence of finite number of chain segments, hydrodynamic interaction, and internal viscosity on intrinsic birefringence and viscosity of polymer solutions in an oscillating laminar flow field, J. Chem. Phys.46, 4881–4885 (1967).

    Google Scholar 

  38. Thurston, G. B., J. L. Schrag Relaxation characteristics and intrinsic birefringence and viscosity of polystyrene solutions for a wide range of molecular weights, J. Polymer Sci., pt. A2,6, 1331–1347 (1968).

    Google Scholar 

  39. Thurston, G. B. Exact and approximate eigenvalues and intrinsic functions for the Gaussian chain theory, Polymer15, 569–572 (1974).

    Google Scholar 

  40. Ferry, J. D. Viscoelastic properties of polymers, (John Wiley and Sons, Inc., New York 1970) (see p. 239).

    Google Scholar 

  41. Thurston, G. B., J. R. Wyhof (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 figures and 3 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thurston, G.B., Greiling, H. Viscoelastic properties of pathological synovial fluids for a wide range of oscillatory shear rates and frequencies. Rheol Acta 17, 433–445 (1978). https://doi.org/10.1007/BF01525959

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01525959

Keywords

Navigation