Skip to main content
Log in

Peculiarities of the solution of thermoelastoplastic problems by the finite-element method

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. O. Zenkewicz, Finite-Element Method in Engineering [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  2. E. M. Morozov and G. P. Nikishkov, Finite-Element Method in Fracture Mechanics [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  3. A. S. Tsybenko and A. V. Idesman, “Algorithm for solution of the problem of nonisothermal thermoplasticity on the basis of the finite-element method,” Probl. Prochn., No. 6, 38–42 (1983).

    Google Scholar 

  4. V. I. Levitas, “On certain models of the inelastic deformation of materials. Reports 1 and 2,” Probl. Prochn., No. 12, 70–83 (1980).

    Google Scholar 

  5. N. V. Novikov, V. I. Levitas, and A. V. Idesman, “Solution of contact thermoplastic problems by the finite-element method,” Dokl. Akad. Nauk Ukr. SSR, Ser. A., No. 1, 29–34 (1985).

    Google Scholar 

  6. S. É. Umanskii, “Construction of more effective schemes for the finite-element method based on modified and mixed approximations,” Probl. Prochn., No. 7, 112–118 (1983).

    Google Scholar 

  7. S. É. Umanskii, “General theory and practical application of modified-mixed schemes of the finite-element method,” Probl. Procn., No. 12, 83–89 (1984).

    Google Scholar 

  8. D. Norri and J. Fries, Introduction to the Finite-Element Method [Russian translation], Moscow (1981).

  9. A. S. Tsybenko and N. G. Krishchuk, “Modified Kraut method for solving linear algebraic equations of high order,” Probl. Prochn., No. 6, 62–65 (1983).

    Google Scholar 

  10. A. S. Tsybenko, N. G. Vashchenko, and N. G. Krishchuk, “Package of programs for investigating the thermal-stress state of structural components,” Fifteenth Scientific Conference on Thermal Stresses in Structural Components: Theses of Papers [in Russian], Naukova Dumka, Kiev (1980), p. 90.

    Google Scholar 

  11. P. G. Hodge and G. N. White, “A quantitative comparison of flow and deformation theories of plasticity,” J Appl. Mech.,17, No. 2, 180–184 (1950).

    Google Scholar 

  12. L. I. Sedov, Continuum Mechanics [in Russian], Vol. 2, Nauka, Moscow (1976).

    Google Scholar 

  13. V. I. Levitas, “Dissipation postulate for discrete and continual plastic systems,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 6, 26–32 (1983).

    Google Scholar 

  14. L. V. Freund, “Constitutive equations for elastic-plastic materials at finite strain,” Int. J. Solids Struct.,6, No. 6, 1193–1209 (1970).

    Google Scholar 

  15. V. I. Levitas, “Theory of large elastoplastic deformations under high pressure,” Probl. Prochn., No. 8, 86–93 (1986).

    Google Scholar 

  16. R. M. McMeeking and J. R. Rice, “Finite-element formulations for problems of large elastic-plastic deformation,” Int. J. Solids Struct.,11, No. 5, 601–616 (1975).

    Google Scholar 

Download references

Authors

Additional information

Institute of Superhard Materials, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Problemy Prochnosti, No. 10, pp. 60–66, October, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitas, V.I., Idesman, A.V. Peculiarities of the solution of thermoelastoplastic problems by the finite-element method. Strength Mater 18, 1358–1365 (1986). https://doi.org/10.1007/BF01523267

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01523267

Keywords

Navigation