Skip to main content
Log in

Refraction and absorption of light in bacterial suspensions

  • Originalarbeiten
  • Kolloide
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

The apparent average refractive indices of three types of microorganism in liquid suspension have been estimated by two methods. In the first, the refractive index of the aqueous suspension is measured in an interferometer, the bacterial cell volume fraction is estimated from the dilution of an added inert solute, and the refractive index of the disperse phase is calculated with the aid of a mixture rule. In the second method, optical density spectra of suspensions in several concentrated solutions of nonpenetrating solutes are measured as a function of the refractive index,n 1, of the solution. The value ofn 1 when the optical density,E, has its smallest value is equated to the average cell refractive index and the constants of the parabolaE (n 1) are related to the heterogeneity of the cell population in respect to refractive index. The preliminary results obtained by the two methods are in satisfactory agreement and are consistent with the specific refractive increments of protein and nucleic acid and their concentrations in the cell. It is pointed out that measurements of optical density spectra can also give useful information concerning the number and size of cells in a suspension and their optical dispersion constants. To obtain such information, however, a spectrophotometer specially designed to exclude forward-scattered light must be used and an acceptable theory must be available. Finally, the apparent spectral absorption of “clarified” cell suspensions is presented and compared with spectra obtained by other methods. It is pointed out that because of refractive heterodispersity even “clarified” suspensions are turbid, so that this method does not provide a completely satisfactory technique for cell spectrophotometry.

Zusammenfassung

Es wurde der scheinbare mittlere Brechungsindex von 3 Typen von Mikroorganismen in flüssiger Suspension nach zwei Methoden abgeschätzt:

Bei der ersten Methode wird der Brechungsindex der bisherigen Lösung in einem Interferometer gemessen. Die Volumenkonzentration der Bakterienzellen wird aus der Verdünnung mit einer zugesetzten inerten Komponente abgeschätzt. Der Brechungsindex der dispersen Phase wird mit Hilfe der Mischungsregel berechnet.

Nach der 2. Methode werden Spektren der optischen Dichte der Suspensionen in verschiedenen konzentrierten Lösungen von nicht-mischbarer 2. Komponente als Funktion des Brechungsindexn 1 gemessen. Dieser Brechungsindexn 1 hat seinen kleinsten Wert, wenn die optische DichteE dem mittleren Brechungsindex der Zellen gleich ist, und die Konstanten der ParabelnE (n 1) stehen in Beziehung zur Heterogenität der Zellverteilung in Bezug auf den Brechungsindex.

Die vorläufig nach den beiden Methoden erhaltenen Ergebnisse stimmen befriedigend überein und sind konsistent mit den spezifischen Refractionsinkrementen von Eiweiß- und Nukleinsäure und deren Konzentrationen in der Zelle. Es sei betont, daß Messungen der optischen Dichtespektren auch gute Information über Zahl und Größe der Zellen in einer Suspension und über deren optische Dispersionskonstanten geben können. Um diese Information zu erhalten, muß jedoch speziell ein Spektrometer gebaut werden, das gestattet, das vorwärtsgestreute Licht auszuschließen. Außerdem muß eine akzeptable Theorie vorhanden sein. Schließlich wird die scheinbare Spektralabsorption von „geklärten“ Zellsuspensionen dargelegt und mit den Spektren, die nach anderen Methoden erhalten werden, verglichen. Es ist ausgeführt, daß wegen der Heterodispersität auch „geklärte“ Suspensionen streuen, so daß diese Methode keine vollständig befriedigende Technik für Zellspektrometrie darstellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Putzeys, P. andJ. Brosteaux, Bull. Soc. Chim. biol.18, 1681–1703 (1936).

    Google Scholar 

  2. Armstrong, S. H., Jr., M. J. E. Budka, K. C. Morrison andM. Hanson, J. Amer. chem. Soc.69, 1747–1753 (1947).

    Google Scholar 

  3. McMeekin, T. L., M. Wilensky, andM. L. Groves, Biochem. biophys. Res. Commun.7, 151–156 (1962).

    Google Scholar 

  4. Doty, P. andE. P. Geiduschek, Optical Properties of Proteins. In:H. Neurath andK. Bailey, The Proteins, Vol. I, Part A, page 393 (New York 1953).

  5. Tennent, H. G., andC. F. Vilbrandt, J. Amer. chem. Soc.65, 424–428 (1943).

    Google Scholar 

  6. Northrop, T. G. andR. L. Sinsheimer, J. chem. Phys.22, 703–707 (1954).

    Google Scholar 

  7. Reichmann, M. E., S. A. Rice, C. A. Thomas, andP. Doty, J. Amer. chem. Soc.76, 3047–3053 (1954).

    Google Scholar 

  8. Oster, G., Science103, 306–308 (1946).

    Google Scholar 

  9. McFarlane, A. S. andR. A. Kekwick, Biochem. J.32, 1607–1613 (1938).

    Google Scholar 

  10. Lauffer, M. A., J. phys. Chem.42, 935–944 (1938).

    Google Scholar 

  11. Ogston, A. G., Brit. J. exper. Path.26, 286–287 (1945).

    Google Scholar 

  12. Taylor, N. W., H. T. Epstein, andM. A. Lauffer, J. Amer. chem. Soc.77, 1270–1273 (1955).

    Google Scholar 

  13. Exner, S., Pflügers Arch. ges. Physiol.40, 379 bis 393 and Plates IV, V (1887).

    Google Scholar 

  14. Vlès, F., Propriétés optiques des muscles (Paris 1911).

  15. Vlès, F., Compt. rend. Soc. Biol.85, 494–496 (1921).

    Google Scholar 

  16. Fauré-Fremiet, E., Protoplasma6, 521–609 and Plates 2 to 6 (1929).

    Google Scholar 

  17. Barer, R. andK. F. A. Ross, J. Physiol.118, 38 P (1952).

  18. Barer, R., K. F. A. Ross, andS. Tkaczyk, Nature171, 720–724 (1953).

    PubMed  Google Scholar 

  19. Barer, R. andS. Joseph, Q. J. micr. Sci.95, 399–423 (1954).

    Google Scholar 

  20. Barer, R. andS. Joseph, Q. J. micr. Sci.96, 1–27 (1955).

    Google Scholar 

  21. Barer, R. andS. Joseph, Q. J. micr. Sci.96, 423–447 (1955).

    Google Scholar 

  22. Barer, R., J. opt. Soc. Amer.47, 545–556 (1957).

    Google Scholar 

  23. Ross, K. F. A., Nature174, 836–837 (1954).

    PubMed  Google Scholar 

  24. Ross, K. F. A., Q. J. micr. Sci.98, 435–454 (1957).

    Google Scholar 

  25. Ross, K. F. A. andE. Billing, J. gen. Microbiol.16, 418–425 (1957).

    PubMed  Google Scholar 

  26. Peshkov, M. A., Uspekhi Sovr. Biol.39, 253–256 (1955).

    Google Scholar 

  27. Fikhman, B. A., andM. D. Pryadkina, Zh. Microbiol. Epidemiol. Immunobiol.32, 60–64 (1961).

    Google Scholar 

  28. Fikhman, B. A., Zh. Microbiol. Epidemiol. Immunobiol.40, 60–65 (1963).

    Google Scholar 

  29. Barer, R., Science121, 709–715 (1955).

    PubMed  Google Scholar 

  30. Guenther, H., Zentralbl. Bakteriol., Parasitenk., Infektionskr. u. Hyg., Abt. II,114, 687–693 (1961).

    Google Scholar 

  31. Tedeschi, H. andD. L. Harris, Arch. Biochem. Biophys.58, 52–67 (1955).

    PubMed  Google Scholar 

  32. Koch, A. L., Biochim. biophys. Acta51, 429 bis 441 (1961).

    Google Scholar 

  33. Shibata, K., Spectrophotometry of Translucent Biological Materials — Opal Glass Transmission Method. In: Methods of Biochemical Analysis, edited byD. Glick, Vol. 7, page 77 (New York 1959).

  34. Shibata, K., A. A. Benson, andM. Calvin, Biochim. biophys. Acta15, 461–470 (1954).

    PubMed  Google Scholar 

  35. Christiansen, C., Wied. Ann. Physik23, 298 bis 306 (1884).

    Google Scholar 

  36. Christiansen, C., Wied. Ann. Physik24, 439–446 (1885).

    Google Scholar 

  37. Kruis, A., Z. phys. Chem.34 B, 13–50 (1936).

    Google Scholar 

  38. Gerhardt, P. andS. H. Black, J. Bact.82, 750–760 (1961).

    PubMed  Google Scholar 

  39. Bateman, J. B., E. J. Wenck, andD. C. Eshler, J. Coll. Sci.14, 308–329 (1959).

    Google Scholar 

  40. Brice, B. A. andM. Halwer, J. opt. Soc. Amer.41, 1033–1037 (1951).

    Google Scholar 

  41. Perlmann, G. E. andL. G. Longsworth, J. Amer. chem. Soc.70, 2719–2724 (1948).

    Google Scholar 

  42. Tilton, L. W., andJ. K. Taylor, J. Res. Nat. Bur. Standards20, 419–477 (1938).

    Google Scholar 

  43. von Obermayer, A., Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Cl., II,61, 797–803 (1870).

    Google Scholar 

  44. Zimm, B. H. andW. B. Dandliker, J. phys. Chem.58, 644–648 (1954).

    Google Scholar 

  45. Nakagaki, M. andW. Heller, J. appl. Phys.27, 975–979 (1956).

    Google Scholar 

  46. Van de Hulst, H. C., Light Scattering by Small Particles (New York 1957).

  47. Heller, W; andR. M. Tabibian, J. coll. Sci.12, 25–39 (1957).

    Google Scholar 

  48. Heller, W., Theoretical and Experimental Investigation of the Light Scattering of Colloidal Spheres. In: Electromagnetic Scattering, edited byM. Kerker, page 101 (New York 1963).

  49. Monk, G. W., J. Bact.74, 71–74 (1957).

    PubMed  Google Scholar 

  50. Bateman, J. B. andG. W. Monk, Science121, 441–442 (1955).

    PubMed  Google Scholar 

  51. Bernheim, F., J. gen. Microbiol.30, 53–58 (1963).

    PubMed  Google Scholar 

  52. Latimer, P., Plant Physiol.34, 193–199 (1959).

    Google Scholar 

  53. Neihof, R. A., Physiochemical properties of bacterial cell Walls. First International Symposium on Aerobiology (Berkeley, Calif. 1963).

  54. Hopkins, G. R. andR. L. Sinsheimer, Biochim. biophys. Acta17, 476–484 (1955).

    PubMed  Google Scholar 

  55. Northrop, T. G., R. L. Nutter andR. L. Sinsheimer, J. Amer. Chem. Soc.75, 5134–5135 (1953).

    Google Scholar 

  56. Murray, R. G. E., The Internal Structure of the Cell. In: The Bacteria, Vol. I: Structure, edited byI. C. Gunsalus andR. Y. Stanier (New York 1960).

  57. Taysum, D. H., J. chem. Phys.25, 183–184 (1956).

    Google Scholar 

  58. Murchio, J. C. andM. B. Allen, Measurements of absorption spectra of chlorophyll in algal cell suspensions. International Biophysics Congress, Abstracts, p. 24–25 (1961).

  59. Edsall, J. T. andW. B. Dandliker, Fortschr. chem. Forsch.2, 1–56 (1951).

    Google Scholar 

  60. Doty, P. andJ. T. Edsall, Adv. Protein Chem.6, 37–121 (1951).

    Google Scholar 

  61. Powell, E. O., J. Sci. Food Agric.14, 1–8 (1963).

    Google Scholar 

  62. Duysens, L. N. M., Biochim. biophys. Acta19, 1–12 (1956).

    PubMed  Google Scholar 

  63. Shibata, K., Spectrophotometry of Opaque Biological Materials — Reflection Methods. In: Methods of Biochemical Analysis, Vol.9, page 217. Interscience (New York 1961).

    Google Scholar 

  64. Chance, B., Science120, 767–775 (1954).

    Google Scholar 

  65. Chance, B., Enzyme Kinetics in the Transient State. In: Technique of Organic Chemistry, Vol. 8, Investigation of Rates and Mechanisms of Reactions, 2nd Edition. Edited byS. L. Friess, E. S. Lewis andA. Weissberger (New York 1963).

  66. Englander, S. W. andH. T. Epstein, Arch. Biochem. Biophys.68, 144–149 (1957).

    PubMed  Google Scholar 

  67. Vandenbelt, J. M. andC. M. Shearer, Construction correction for turbidity and non-specific absorption. Carygraph, Vol. 2, No. 1, 8–11, 1962 Applied Physics Corporation, Monrovia (California).

    Google Scholar 

  68. Latimer, P. andE. Rabinowitch, Arch. Biochem. Biophys.84, 428–441 (1959).

    PubMed  Google Scholar 

  69. MacRae, R. A., J. A. McClure, andP. Latimer, J. opt. Soc. Amer.51, 1366–1372 (1961).

    Google Scholar 

  70. Keilin, D. andE. F. Hartree, Nature164, 254 to 259 (1949).

    Google Scholar 

  71. Keilin, D. andE. F. Hartree, Nature165, 504–505 (1950).

    Google Scholar 

  72. Butler, W.L., J.opt.Soc. Amer.52, 292–299 (1962).

    Google Scholar 

  73. Charney, E. andF. S. Brackett, Arch. Biochem. Biophys.92, 1–12 (1961).

    PubMed  Google Scholar 

  74. Richetta, P. J., J. opt. Soc. Amer.55, 21–26 (1965).

    Google Scholar 

  75. Dognon, A., Compt. rend. Soc. Biol.135, 113–115 (1941).

    Google Scholar 

  76. Dognon, A. andY. Simonot, Compt. rend. Soc. Biol.135, 146–148 (1941).

    Google Scholar 

  77. Yanari, S. andF. A. Bovey, J. biol. Chem.235, 2818–2826 (1960).

    PubMed  Google Scholar 

  78. Bigelow, C. C., andI. I. Geschwind, Compt.-rend. Lab. Carlsberg31, 283–304 (1960).

    Google Scholar 

  79. Glazer, A. N. andE. L. Smith, J. biol. Chem.236, 2942–2947 (1961).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bateman, J.B., Wagman, J. & Carstensen, E.L. Refraction and absorption of light in bacterial suspensions. Kolloid-Z.u.Z.Polymere 208, 44–58 (1966). https://doi.org/10.1007/BF01499867

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01499867

Keywords

Navigation