Skip to main content
Log in

The interpretation of droplet coalescence data using the log normal distribution

  • Originalarbeiten
  • Kolloide
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

The rest times of hydrocarbon oil droplets have been measured at the oil/sodium dodecyl sulphate solution interface. The existing equations, both physically derived and empirical, have been applied to the data obtained. In most cases the expressions used were not suitable for general application to our data.

From a consideration of the distribution of droplet rest times about the mean we conclude that the lognormal distribution would be the most suitable. The graphical test of this distribution function gave a good fit in each case. The method is useful in the analysis of stability data; results for each system can be characterized by the two parametersM and σg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

coalescence constant, eq. [1]

F :

fraction of droplets coalesced at timet

k :

rate constant for coalescence

K :

coalescence constant, equation [3]

M :

geometric mean rest time=t1/2

n :

index

N :

number of drops remaining at timet

N 0 :

total number of drops observed

t :

time (seconds)

t 0 :

minimum rest time, eq. [3] and [4]

t d :

time required for film drainage

T 1/2:

first order half life for coalescence

t 1/2:

time required for half of droplets to coalesce

t :

max maximum rest time

t :

mean mean rest time

t :

min minimum rest time

x :

parameter log-normally distributed

y :

frequency function, eq. [8]

α :

coalescence constant eq. [2]

σ g :

geometric standard deviation

References

  1. Cockbain, E. G. andT. S. McRoberts, J. Colloid Sci.8, 440 (1953).

    Google Scholar 

  2. Nielsen, L. E., R. Wall, andG. Adams, J. Colloid Sci.13, 441 (1958).

    Google Scholar 

  3. Edge, R. M. andM. Greaves, Inst. Chem. Eng. Symp. Series,26, 63 (1967).

    Google Scholar 

  4. Charles, G. E. andS. G. Mason, J. Colloid Sci.15, 236 (1960).

    Google Scholar 

  5. Jeffreys, G. V. andJ. L. Hawksley, J. Appl. Chem.12, 329 (1962).

    Google Scholar 

  6. Jeffreys, G. V. andJ. L. Hawksley, Amer. Inst. Chem. Eng. J.11, 413 (1965).

    Google Scholar 

  7. Biswas, B. andD. A. Haydon, Kolloid-Z. u. Z. Polymere185, 31 (1962).

    Google Scholar 

  8. El-Shimi, A. F. andV. N. Izmailova, Abh. Dtsch. Akad. Wiss. Berlin (Chem. Geol. Biol.)6, 868 (1966).

    Google Scholar 

  9. Matejicek, A., M. Sivokova andJ. Eichler, Collection Czechoslov Chem. Commun.36, 35 (1971).

    Google Scholar 

  10. Watanabe, T. andM. Kusui, Bull. Chem. Soc. Jap.31, 236 (1958).

    Google Scholar 

  11. Elton, G. A. H. andR. G. Picknett, Proc. 2nd Int. Congress on Surface Activity,1, 288 (London 1957).

    Google Scholar 

  12. Gillespie, T. andE. K. Rideal, Trans. Faraday. Soc.52, 173 (1956).

    Google Scholar 

  13. Glass, J. E., R. D. Lundberg, andF. E. Bailey, J. Colloid Interface Sci.33, 491 (1970).

    Google Scholar 

  14. Konnecke, H. G., Z. Physik. Chem. (Leipzig),211, 208 (1959).

    Google Scholar 

  15. Irani, R. R. andC. F. Callis, Particle Size Measurement, Interpretation and Application. (New York, London 1963).

  16. Hodgson, T. D. andJ. C. Lee, J. Colloid Interface Sci.30, 94 (1969).

    Google Scholar 

  17. Lang, S. B., Ph. D. Thesis, Univ. of California, 1962.

  18. Lang, S. B, andC. R. Wilke, Ind. Eng. Chem. Fundam.10, 329 (1971).

    Google Scholar 

  19. Lawson, G., Ph. D. Thesis, Univ. of Manchester (1967).

  20. Kottler, F., J. Franklin Inst.250, 339 (1950).

    Google Scholar 

  21. Kottler, F., J. Franklin Inst.250, 419 (1950).

    Google Scholar 

  22. Smith, J. E. andM. L. Jordan, J. Colloid Sci.19, 549 (1964).

    Google Scholar 

  23. Drinker, P. andT. Hatch, Industrial Dust, 2nd Ed. (New York 1954).

  24. Aitchison, J. andJ. A. C. Brown, The Lognormal Distribution. (Cambridge Univ. Press, 1957.)

  25. Kottler, F., J. Franklin Inst.251, 499, 617 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, S.S., Smith, A. The interpretation of droplet coalescence data using the log normal distribution. Kolloid-Z.u.Z.Polymere 251, 337–342 (1973). https://doi.org/10.1007/BF01498732

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01498732

Keywords

Navigation