Skip to main content
Log in

Enhanced purine nucleotide synthesis in erythrocytes of uremic patients

Erhöhte Purinnukleotidsynthese in Erythrozyten von urämischen Patienten

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Erythrozyten von gesunden Kontrollpersonen und von urämischen Patienten wurden im Dichtegradienten in drei Altersklassen getrennt und die Enzyme des Purinnukleotid-Reutilisierungsstoffwechsels bestimmt:

  1. 1.

    Bei gleichzeitiger Verminderung der Fraktion der alten Zellen war der Anteil der jüngeren Erythrozyten in den urämischen Patienten um das drei- bis vierfache erhöht.

  2. 2.

    In allen Fraktionen der urämischen Erythrozyten waren die spezifischen Aktivitäten der vom Zellalter-abhängigen Enzyme, Phosphoribosyl-1-pyrophosphat (PRPP)-Synthetase, die Adenin-Phosphoribosyltransferase und die intrazellulären Phosphoribosyl-1-pyrophosphat-Konzentrationen deutlich erhöht. Die Halbwertszeiten und die kinetischen Parameter beider Enzyme waren jedoch unverändert.

  3. 3.

    Die Aktivität des Pentosephosphat-Shunts (PPS), gemessen an den intrazellulären Ribose-5-phosphat-Konzentrationen, war in den Erythrozyten urämischer Patienten nicht signifikant verändert. Nach Aktivierung des Pentosephosphat-Shunts durch Methylenblau (10−4 M) werden in allen Erythrozyten-Fraktionen gleiche Steigerungsraten festgestellt, wobei die intrazellulären Phosphoribosyl-1-pyrophosphat-Konzentrationen bei physiologischen Serumphosphatspiegeln unverändert bleiben.

  4. 4.

    Die Versuche zeigen, daß als Ursache erhöhter intraerythrozytärer ATP — Spiegel in Urämie-Patienten eine gesteigerte Adeninnukleotidsynthese durch einen verstärkten “salvage-pathway” angenommen werden kann.

  5. 5.

    Unsere Ergebnisse weisen darauf hin, daß die hypermetabolische Aktivität der Erythrozyten niereninsuffizienter Patienten Ausdruck einer jüngeren Erythrozyten-Population ist.

Summary

Studies were performed which suggest that the increased red cell levels of ATP and adenine nucleotides in uremic patients may be secondary to an increased biosynthetic rate of adenine nucleotides via salvage pathway by the predominance of younger red cells. Both normal and uremic red cells were separated in three groups according to their age by centrifugation in a discontinous density gradient using phthalate esters as separating liquids.

  1. 1.

    The uremic subjects have a substantial reduction of the older (more dense) red cells with a 3–4 fold increase of the younger red cells.

  2. 2.

    The specific activity of the salvage pathway enzymes phosphoribosyl-1-pyrophosphate (PRPP)-synthetase, adenine phosphoribosyltransferase and the red cell PRPP levels are strictly age-dependent and substantially increased in the uremic erythrocytes. No definite alterations of enzyme halflifes of both enzymes could be discerned. No differences were found in the substrate saturation curves between the enzymes of normal and uremic erythrocytes.

  3. 3.

    Red cell methylene-blue stimulated pentose phosphate pathway (PPS) wasn't significantly lower in patients with chronic uremia than in controls, as could be shown by the determination of red cell ribose-5-phosphate concentration. There was no difference of the steady-state levels of ribose-5-phosphate in the age-dependent red cell fractions of both normal and uremic subjects.

  4. 4.

    The results support the assumption that the elevated ATP levels in the uremic red cells may be related to their higher intrinsic ATP synthetic capacity via salvage pathway.

  5. 5.

    The enzymatic alterations in the uremic red cells are independent of extracorpuscular factors including phosphate, and it was concluded that most of the described abnormalities in the uremic red cell metabolism reflect only the hypermetabolic state of a young red cell population. The conflicting results concerning red cell metabolism of uremic patients could be probably caused by an inconstant percentage of younger red cells in various uremic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bartlett GR (1972) Effects of adenine on stored human red cells. In: Brewer GJ (ed) Hemoglobin and red cell structure and function. Plenum Press, New York, pp 479–494

    Google Scholar 

  2. Becher HJ, Löhr GW (1979) Inosine-5′-phosphate dehydrogenase activity in normal and leukemic blood cells. Klin Wochenschr 57:1109–1115

    Google Scholar 

  3. Becker MA, Meyer LJ, Seegmiller JE (1973) Gout with purine overproduction due to increased phosphoribosylpyrophosphate synthetase activity. Am J Med 55:232–242

    Google Scholar 

  4. Blumberg A (1972) Die renale Anämie. Hans Huber, Bern Stuttgart Wien, S 107–108

    Google Scholar 

  5. Boer P, Lipstein B, De Vries A, Sperling O (1976) The effect of ribose-5-phosphate and phosphoribosyl-1-pyrophosphate availability on de novo synthesis of purine nucleotides in rat liver slices. Biochim Biophys Acta 432:10–17

    Google Scholar 

  6. Borden M, Nyhan WL, Bakay B (1974) Increased activity of adenine phosphoribosyltransferase in erythrocytes of normal newborn infants. Ped Res 8:31–39

    Google Scholar 

  7. Brain MC, Card RT (1972) Effect of inorganic phosphate on red cell metabolism: In vitro and in vivo studies. In: Brewen GJ (ed) Hemoglobin and red cell structure and function. Plenum Press, New York, pp 145–154

    Google Scholar 

  8. Brok F, Ramot B, Zwang E, Danon D (1966) Enzyme activities in human red cells of different age groups. Isr J Med Science 2:291

    Google Scholar 

  9. Chapman RG, Schaumburg L (1967) Glycolysis and glycolytic enzyme activity of aging red cells in man. Br J Haematol 13:665–678

    Google Scholar 

  10. Chillar RK, Desforges JF (1974) Red cell organic phosphates in patients with chronic renal failure on maintenance hemodialysis. Br J Haematol 26:549–556

    Google Scholar 

  11. Chillar R, Desforges J (1972) Erythrocyte, 2,3-DPG, creatine, and glutamic oxalacetic acid (GOT) changes with hemodialysis. Clin Res 20:482

    Google Scholar 

  12. Danon D, Marikovsky Y (1964) Determination of density distribution of red cell population. J Lab Clin Med 64:668–673

    Google Scholar 

  13. De Verdier CH, Ericson A, Niklasson F, Westman M (1977) Adenine metabolism in man. Scand J Clin Invest 37:567–575

    Google Scholar 

  14. Dzurik R, Hupkova V, Cernacek P, Valovicova E, Niederland TR (1973) The isolation of an inhibitor of glucose utilization from the serum of uremic subjects. Clin Chim Acta 46:77

    Google Scholar 

  15. Fox JH, Kelley WN (1971) Human phosphoribosylpyrophosphate synthetase. Distribution, purification, and properties. J Biol Chem 246:5739–5748

    Google Scholar 

  16. Fox JH, Kelley WN (1971) Phosphoribosylpyrophosphate in man: Biochemical and clinical significance. Ann Intern Med 74:424–433

    Google Scholar 

  17. Fox JH, Wyngaarden JB, Kelley WN (1970) Depletion of erythrocyte phosphoribosylpyrophosphate in man. A newly observed effect of allopurinol. New Eng J Med 283:1177

    Google Scholar 

  18. Görcken G (1968) Der Einfluß der anorganischen Phosphatkonzentration auf den Adeningehalt und die Glycolysegeschwindigkeit von Kaninchenerythrozyten. V. Symp. on Structur and Function of Erythrocytes, Berlin, 1967. Folia Haematol (Leipz) 89:400

    Google Scholar 

  19. Henderson JF, Khoo MKY (1965) Availability of 5-phosphoribosyl-1-pyrophosphate for ribonucleotide synthesis in Ehrlichascites tumor cells in vitro. J Biol Chem 240:2358

    Google Scholar 

  20. Hershko A, Razin A, Mager J (1969) Regulation of the synthesis of 5-phosphoribosyl-1-pyrophosphate in intact red cells and in cell-free preparations. Biochim Biophys Acta 184:64–76

    Google Scholar 

  21. Hurt G, Chanutin A (1964) Organic phosphate compounds of erythrocytes from individuals with uremia. J Lab Clin Med 64:675–684

    Google Scholar 

  22. Jahrmärker H (1968) Beobachtungen bei der Phosphat-Aktivierung der Erythrozyten-Glycolyse. In: Deutsch, Gerlach, Moser (eds) Metabolism and membrane permeability of erythrocytes and thrombocytes. Thieme, Stuttgart, pp 19–32

    Google Scholar 

  23. Jahrmärker H (1964) Activation of glycolysis in human erythrocytes by inorganic phosphate. 6. Int Un Biochem 32:514

    Google Scholar 

  24. Kelley WN, Fox JH, Wyngaarden JB (1970) Regulation of purine biosynthesis in cultured human cells. I. Effects of orotic acid. Biochim Biophys Acta 215:5120

    Google Scholar 

  25. Kelley WN, Greene ML, Rosenbloom FM, Henderson JF, Seegmiller JE (1969) Hypoxanthine-guanine phosphoribosyltransferase deficiency in gout: a review. Ann Intern Med 70:155

    Google Scholar 

  26. Kelley WN, Greene ML, Fox JH, Rosenbloom FM, Levy RJ, Seegmiller JE (1970) Effects of orotic acid on purine and lipoproteine metabolism in man. Metabolism 19:1025

    Google Scholar 

  27. Kramer HJ, Gospodinov D, Krück F (1976) Functional and metabolic studies on red blood cell sodium transport in chronic uremia. Nephron 16:344–358

    Google Scholar 

  28. Kuroynagi T, Kurisu A, Sugiyama H, Saito M (1964) The ADP and ATP levels and the phosphorylating activity of erythrocytes in patients with uremia associated with chronic renal failure. Tokohu J Exp Med 84:105

    Google Scholar 

  29. Lichtman MA, Miller DR (1970) Erythrocyte and glycolysis, 2,3-diphosphoglyerate, and adenosine triphosphate concentration in uremic subjects: relationship to extracellular phosphate concentration. J Lab Clin Med 76:267–279

    Google Scholar 

  30. Lichtman MA, Miller DR, Freeman RB (1969) Erythrocyte adenosine triphosphate depletion during hypophosphatemia in a uremic subject. New Engl J Med 280:240

    Google Scholar 

  31. Löhr GW, Waller HD, Karges O, Schlegel B, Müller AA (1958) Zur Biochemie der Alterung menschlicher Erythrozyten. Klin Wochenschr 36:1008

    Google Scholar 

  32. Mansell M, Grimes AJ (1979) Red and white cell abnormalities in chronic renal failure. Br J Haematol 12:169–174

    Google Scholar 

  33. Manohar S, Denstadt OF, Rubinstein D (1966) The metabolism of the erythrocyte. XVI. Incorporation of glucose into adenine nucleotides by human and rabbit erythrocytes. Can J Biochem 44:59

    Google Scholar 

  34. Meyskens FL, Williams HE (1971) Concentration and synthesis of phosphoribosyl-1-pyrophosphate in erythrocytes from normal, hyperuricemic and gouty subjects. Metabolism 20:737

    Google Scholar 

  35. Monti M (1977) Microcalorimetric measurements of heat production in erythrocytes of patients with chronic uremia. Scand J Haematol 18:154–162

    Google Scholar 

  36. Morgan JM, Morgan RE (1964) Study of the effect of uremic metabolites on erythrocyte glycolysis. Metabolism 13:629

    Google Scholar 

  37. Morgan JM, Morgan RE, Thomas GE (1963) Inhibition of lactic dehydrogenase by ultrafiltrate of uremic blood. Metabolism 12:1051

    Google Scholar 

  38. Muirhead EE, Jones F (1958) Lowered glucose utilization, phosphate uptake and reduced glutathione content of erythrocytes following bilateral nephrectomy. J Lab Clin Med 51:49–52

    Google Scholar 

  39. Nakashima K, Oda S, Miwa S (1973) Red cell density in various blood disorders. J Lab Clin Med 82:297–302

    Google Scholar 

  40. Nathan DG, Beck LH, Hampers CL (1968) Erythrocyte production and metabolism in anephric and uremic men. Ann NY Acad Sci 149:539

    Google Scholar 

  41. Oski FA, Naiman JL (1965) Red cell metabolism in the premature infant. I. Adenosine triphosphate levels, adenosine triphosphate stability, and glucose consumption. Pediatrics 36:104–112

    Google Scholar 

  42. Oski FA (1969) Red cell metabolism in the newborn infant. V. Glycolysis intermediates and glycolytic enzymes. Pediatrics 44:84–91

    Google Scholar 

  43. Raich PC, Rodriguez JM, Desai T, Koyst DR, Shahidi NT (1966) Effect of hemodialysis on pH, inorganic phosphate and red cell 2,3-DPG in patients with uremia (Abstract). Clin Res 19:428

    Google Scholar 

  44. Raivo KO, Seegmiller JE (1970) The role of phosphoribosyltransferases in purine metabolism. Curr Top Cell Regul 2:201–225

    Google Scholar 

  45. Rapoport S, Guest GM (1938) Changes of organic acid-soluble phosphorus, diphosphoglycerate, adenosine triphosphate, and inorganic phosphorus in the blood cells of rats during the development and healing of rickets. J Biol Chem 126:749

    Google Scholar 

  46. Rizzo SC, Eckel RE (1966) Control of glycolysis in human erythrocytes by inorganic phosphate and sulfate. Am J Physiol 211:429

    Google Scholar 

  47. Sass MD, Vorsanger E, Spear PW (1964) Enzyme activity as an indicator of red cell age. Clin Chim Acta 10:21–26

    Google Scholar 

  48. Simon ER (1967) Adenine and purine nucleosides in human red cell preservation. Transfusion 7:395–400

    Google Scholar 

  49. Sperling O, Eilam G, Persky-Brosh S, De Vries A (1972) Simpler method for the determination of 5′-phosphoribosyl-1-pyrophosphate in red blood cells. J Lab Clin Med 79:1021–1026

    Google Scholar 

  50. Sperling O, Persky-Brosh S, Boer P, De Vries A (1973) Human erythrocyte phosphoribosylpyrophosphate synthetase mutationally altered in regulatory properties. Biochem Med 7:389–395

    Google Scholar 

  51. Syllm-Rapoport I, Jakobasch G, Prehn S, Rapoport S (1969) On a regulatory system of the adenine level in the plasma connected with red cell maturation and its effect on the adenine nucleotides of the circulating erythrocyte. Blood 33:617

    Google Scholar 

  52. Tsuboi KK (1965) Limiting role of adenine nucleotide in the glycolysis of the human erythrocyte. J Biol Chem 240:582

    Google Scholar 

  53. Valentine WN, Kürschner KK (1972) Studies on human erythrocyte nucleotide metabolism. I. Monisotopic methodologies. Blood 39:666–673

    Google Scholar 

  54. Wallas ChH (1974) Metabolic studies on the erythrocyte from patients with chronic renal disease on haemodialysis. II. ATP metabolism. Br J Haematol 27:145–152

    Google Scholar 

  55. Wallas ChH (1974) Metabolic studies on red cells from patients with chronic renal disease on haemodialysis. Br J Haematol 26:71–78

    Google Scholar 

  56. Welt LG, Sachs JR, Mc Manus TJ (1964) An ion transport defect in erythrocytes from uremic patients. Trans Assoc Am Physicians 77:169

    Google Scholar 

  57. Wohlhueter R (1975) Hypoxanthine phosphoribosyltransferase activity in normal, developing, and neoplastic tissues of the rat. Eur J Cancer 11:463–472

    Google Scholar 

  58. Yawata Y, Howe R, Jacob H (1972) Acquired deficiency of hexosemonophosphate shunt metabolism in uremic red cells. In: Brewer GJ (ed) Hemoglobin and red cell structure and function. Plenum Press, New York, pp 191–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Parts of this work were presented as thesis to the University of Freiburg i. Breisgau

This study was supported by the Deutsche Forschungsgemeinschaft Be 458/4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becher, H.J., Weise, H.J., Volkermann, U. et al. Enhanced purine nucleotide synthesis in erythrocytes of uremic patients. Klin Wochenschr 58, 1243–1250 (1980). https://doi.org/10.1007/BF01478930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01478930

Schlüsselwörter

Key words

Navigation