Skip to main content
Log in

Sauerstofftransportvermögen von Blutersatzflüssigkeiten im Vergleich mit anderen Infusionslösungen

Oxygen transport by solutions for blood replacement in comparison with other infusion solutions

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

To investigate the oxygen transport capacity of solutions for blood replacement the oxygen solubility coefficients (ml/ml atm) at 37° C of 12 solutions for volume replacement were determined and compared with those of 12 solutions for parenteral nutrition, 4 electrolyte solutions and 5 solutions for osmotherapy.

All solutions for volume replacement have lower values for oxygen solubility than human plasma which shows a very constant oxygen solubility value even under extreme conditions. For clinical use of volume replacement solutions it is recommended that the oxygen solubility of the substitute be considered when any of the following conditions presents:

  1. a)

    large amounts are infused (hemodilution).

  2. b)

    isobar of hyperbar oxygen therapy is employed (hyperoxia).

  3. c)

    the body temperature is lowered (hypothermia).

This is valid especially in the case of any impairment of the microcirculation.

Zusammenfassung

Zur Untersuchung des Sauerstofftransportvermögens von Blutersatzflüssigkeiten wurden die O2-Löslichkeitskoeffizienten (ml/ml atm) bei 37° C von 12 Volumenersatzmitteln bestimmt und mit den O2-Löslichkeitskoeffizienten verglichen, die für 12 Lösungen zur parenteralen Ernährung, für 4 Elektrolytlösungen und 5 Lösungen zur Osmotherapie ermittelt wurden.

Im Vergleich zur O2-Löslichkeit des menschlichen Plasmas, die sich auch unter Extrembedingungen nicht ändert, zeigen alle Volumenersatzflüssigkeiten niedrigere Werte. Für den klinischen Einsatz von Volumenersatzmitteln wird empfohlen, die O2-Löslichkeit der Ersatzflüssigkeit zu berücksichtigen, wenn größere Mengen transfundiert werden (Hämodilution) und/oder eine isobare oder hyperbare O2-Therapie angewandt wird (Hyperoxie) und/oder die Körpertemperatur gesenkt wird (Hypothermie).

Dies gilt insbesondere bei Störungen im Bereich der Mikrozirkulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Allen, T.H., Reeve, E.B.: Distribution of “extra plasma” in the blood of some tissues in the dog as measured with P32 and T-1824. Amer. J. Physiol.175, 218 (1953)

    Google Scholar 

  2. Barbee, J.H., Cokelet, G.R.: The Fahraeus effect. Microvasc. Res.3, 6 (1971)

    Google Scholar 

  3. Bayliss, L.E.: The axial drift of the red cells when blood flows in a narrow tube. J. Physiol.149, 593 (1959)

    Google Scholar 

  4. Boerema, J., Meijne, N.G., Brummelkamp, W.K., Bouma, S., Mensch, M.H., Kamermans, S., Hanf, M.S., van Aalderns, W.: Life without blood. J. Cardiovasc. Surg.1, 133 (1960)

    Google Scholar 

  5. Bugliarello, G., Hsiao, G.C.C.: Phase separation in suspensions flowing through bifurcations: a simplified hemodynamic model. Science143, 469 (1964)

    Google Scholar 

  6. Christoforides, C., Laasberg, L.H., Hedley-Whyte, J.: Effect of temperature on solubility of O2 in human plasma. J. Appl. Physiol.26, 56 (1969)

    Google Scholar 

  7. Clark, L.C. (Chairman): Symposium on inert organic liquids for biological oxygen transport. (Atlantic City, 1969) Fed. Proc.29, 1965 (1970)

    Google Scholar 

  8. Copley, A.L., Scott Blair, G.W.: Comparative observations on adherence and consistency of various blood systems in living and artificial capillaries. Rheologica Acta1, 170 (1958)

    Google Scholar 

  9. Dow, P., Hahn, P.F., Hamilton, W.F.: The simultaneous transport of T-1824 and radioactive red cells through the heart and lungs. Amer. J. Physiol.147, 493 (1946)

    Google Scholar 

  10. Ebert, R.V., Stead, E.A.: Demonstration that the cell plasma ratio of blood contained in minute vessels is lower than that of venous blood. J. clin. Invest.20 317 (1941)

    Google Scholar 

  11. Emery, E.W., Gowenlock, A.H., Riddell, A.G., Black, D.A.K.: Intrarenal variations in hematocrit. Clin. Sc.18, 205 (1959)

    Google Scholar 

  12. Everett, N.B., Simmons, B., Lasher, E.P.: Distribution of blood (Fe59) and Plasma (I131) volumes of rats determined by liquid nitrogen freezing. Circ. Res.4, 419 (1956)

    Google Scholar 

  13. Fahraeus, R.: The suspension stability of the blood. Physiol. Rev.9, 241 (1929)

    Google Scholar 

  14. Fitz-Gerald, J.M.: Implications of a theory of erythrocyte motion in narrow capillaries. J. Appl. Physiol.27, 912 (1969)

    Google Scholar 

  15. Fourman, J., Moffat, D.B.: The effect of intra-arterial cushions on plasma skimming in small arteries. J. Physiol.158, 374 (1961)

    Google Scholar 

  16. Freis, E.D., Stanton, J.R., Emerson, C.P.: Estimation of relative velocities of plasma and red cells in the circulation of man. Amer. J. Physiol.157, 153 (1949)

    Google Scholar 

  17. Fung, Y.: Stochastic flow in capillary blood vessels. Microvasc. Res.5, 34 (1973)

    Google Scholar 

  18. Gauer, O.H.: Kreislauf des Blutes. In: Physiologie des Menschen (Gauer/Kramer/Jung), Bd. 3, Herz und Kreislauf. München: Urban und Schwarzenberg 1972

    Google Scholar 

  19. Gaehtgens, P., Benner, K.U., Schickendantz, S., Albrecht, Determination of cellular and plasmatic flow velocity in vitro and in vivo. Pflügers Arch.359, R 32 (1975)

  20. Gaehtgens, P., Benner, K.U., Schickendantz, S., Albrecht, K.H.: Method for simultaneous determination of red cell and plasma flow velocity in vitro and in vivo. Pflügers Arch.361, 191 (1976)

    Google Scholar 

  21. Gaehtgens, P., Benner, K.U., Albrecht, K.H.: Red cell screening during blood flow through small capillaries in vitro. Pflügers Arch.362, R 8 (1976)

    Google Scholar 

  22. Geyer, R.P. (Chairman): Symposium Artificial Blood (Bethesda, 1974) Fed. Proc.34, 1428 (1975)

    Google Scholar 

  23. Gibson, J.G., Seligman, A.M., Peacock, W.C., Aub, J.C., Fine, J., Evans, R.D.: The distribution of red cells and plasma in large and minute vessels of the normal dog, determined by radioactive isotopes of iron and iodine. J. clin. Invest.25, 848 (1946)

    Google Scholar 

  24. Hochmuth, R.M., Davis, D.O.: Changes in hematocrit for blood flow in narrow tubes. Bibl. Anat.10, 59 (1968)

    Google Scholar 

  25. Hochmuth, R.M., Marple, R.N., Sutera, S.P.: Capillary blood flow. I. Erythrocyte deformation in glass capillaries. Microvasc. Res.2, 409 (1970)

    Google Scholar 

  26. Jäger, A.: Die Anordnung und Stellung der roten Blutkörperchen im strömenden Blut. Pflügers Arch. ges. Physiol.235, 705 (1935)

    Google Scholar 

  27. Jodal, M., Lundgren, O.: Plasma skimming in the intestinal tract. Acta physiol. scand.80, 50 (1970)

    Google Scholar 

  28. Johnson, P.C., Wayland, H.: Regulation of blood flow in single capillaries. Amer. J. Physiol.212, 1405 (1967)

    Google Scholar 

  29. Johnson, P.C.: Red cell separation in the mesenteric capillary network. Amer. J. Physiol.221, 99 (1971)

    Google Scholar 

  30. Johnson, P.C., Blaschke, J., Burton, K.S., Dial, J.H.: Influence of flow variations on capillary hematocrit in mesentery. Amer. J. Physiol.221, 105 (1971)

    Google Scholar 

  31. Kilian, J., Ahnefeld, F.W.: Absolute und relative Indikationen für die Anwendung kolloidaler Volumenersatzlösungen. In: Klinische Anästhesiologie und Intensivtherapie, Bd. 9: Indikation, Wirkung und Nebenwirkung kolloidaler Volumenersatzmittel. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  32. Krogh, A.: Studies on the physiology of capillaries. II. The reactions of local stimuli of the blood-vessels in the skin and web of the frog. J. Physiol.55, 412 (1921)

    Google Scholar 

  33. Lawson, H.C.: The volume of blood—a critical examination of methods for its measurement. In: Handbook of Physiology, Circulation Vol. I. Amer. Physiol. Soc., Washington 1962

  34. Levy, M.N.: Oxygen consumption and blood flow in the hypothermic, perfused kidney. Amer. J. Physiol.197, 1111 (1959)

    Google Scholar 

  35. Lewis, A.E., Goodman, R.D., Schuck, E.A.: Organ blood volume measurements in normal rats. J. Lab. clin. Med.39, 704 (1952)

    Google Scholar 

  36. Lighthill, M.J.: Pressure-forcing of tightly-fitted pellets along fluid-filled elastic tubes. J. Fluid Mech.34, 113 (1968)

    Google Scholar 

  37. Lilienfield, L.S., Rose, J.C.: Effect of blood pressure alterations on intrarenal red cell—plasma separation. J. Clin. Invest.37, 1106 (1958)

    Google Scholar 

  38. Lutz, H.: Sauerstoffbindung unter Verwendung von Blutersatzmitteln. Anästhesist13, 136 (1964)

    Google Scholar 

  39. Messmer, K., Sunder-Plassmann, L., Klövekorn, W.P., Holper, K.: Circulatory significance of hemodilution: Rheological changes and limitations. Adv. Microcirc.4, 1 (1972)

    Google Scholar 

  40. Ochwadt, B.: Durchflußzeiten von Plasma und Erythrocyten, intrarenaler Hämatokrit und Widerstandsregulation der isolierten Niere. Pflügers Arch.265, 112 (1957)

    Google Scholar 

  41. Palmer, A.A.: Axial drift of cells and partial plasma skimming in blood flowing through glass slits. Amer. J. Physiol.209, 1115 (1965)

    Google Scholar 

  42. Palmer, A.A.: The influence of the length of a capillary channel on the axial accumulation of red cells. In: Theoretical and Clinical Hemorheology (H.H. Hartert and A.L. Copley eds.) Berlin-Heidelberg-New York: Springer 1971

    Google Scholar 

  43. Pappenheimer, J.R., Kinter, W.B.: Hematocrit ratio of blood within mammalian kidney and its significance for renal hemodynamics. Amer. J. Physiol.185, 377 (1956)

    Google Scholar 

  44. Rapaport, E., Kuida, H., Haynes, F.W., Dexter, L.: Pulmonary red cell and plasma volumes and pulmonary hematocrit in the normal dog. Amer. J. Physiol.185, 127 (1956)

    Google Scholar 

  45. Schmid-Schönbein, H.: Zelluläre Physiologie der Mikrozirkulation: Ausbildung von Risikofaktoren als Folge optimaler Anpassungsfähigkeit. In: Die Mikrozirkulation (F.W. Ahnefeld, K. Messmer, Hrsgb.) Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  46. Schmid-Schönbein, G.W., Zweifach, B.W.: RBC velocity profiles in arterioles and venules of the rabbit omentum. Microvasc. Res.10, 153 (1975)

    Google Scholar 

  47. Starr, M.C., Frasher, W.G.: In vivo cellular and plasma velocities in microvessels of the cat mesentery. Microvasc. Res.10, 102 (1975)

    Google Scholar 

  48. Ulfendahl, R.H.: Distribution of red cells and plasma in rabbit and cat kidneys. Acta physiol. scand.56, 42 (1962)

    Google Scholar 

  49. Unseld, J.M.: Blutersatz durch stromafreie Hämoglobinlösung. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  50. Whitmore, R.L.: A theory of blood flow in small vessels. J. Appl. Physiol.22, 767 (1967)

    Google Scholar 

  51. Zander, R.: Der Verteilungsraum von physikalisch gelöstem Sauerstoff in wäßrigen Lösungen organischer Substanzen. Z. Naturforsch.31c, 339 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zander, R. Sauerstofftransportvermögen von Blutersatzflüssigkeiten im Vergleich mit anderen Infusionslösungen. Klin Wochenschr 56, 567–573 (1978). https://doi.org/10.1007/BF01477253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01477253

Key words

Schlüsselwörter

Navigation