Skip to main content
Log in

Urinary prostaglandins in human neonates: Relationship to kidney function and blood pressure

Prostaglandin-Ausscheidung im Urin bei Neugeborenen: Beziehung zu Nierenfunktion und Blutdruck

  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Auf der Suche nach einem biochemischen Parameter als Marker für die Hypertonie-Gefährdung wurde bei 172 gesunden Neugeborenen am 3. und 5. Lebenstag die Ausscheidung von PGE2 und von PGF gemessen und mit dem Blutdruck, der Elektrolytausscheidung sowie der Urinosmolalität verglichen. Daneben wurde der Blutdruck der Neugeborenen in Beziehung gesetzt zum Blutdruck der Mutter und zur Hypertonie-Anamnese in den Familien der Eltern.

Die PGE2-Ausscheidung stieg von 0,7 ng/mg Kreatinin am 3. Tag auf 1,5 am 5. Tag (p<0,001), während die PGF-Exkretion bei 2 ng/mg Kreatinin konstant blieb. Es bestand eine inverse Korrelation zwischen PGE2 und der Urinosmolalität (p<0,001), während die Kalium-Ausscheidung positiv zur PGF-Exkretion korreliert war (p<0,001). Am 5. Lebenstag war der systolische Blutdruck der Neugeborenen signifikant korreliert zu der PGF-Ausscheidung (p<0,05). Es bestand weiterhin eine positive Korrelation des systolischen Blutdrucks der Neugeborenen zum systolischen Blutdruck der Mütter (p<0,05). Der Blutdruck bei Neugeborenen mit Hypertonie in der Familienanamnese war bereits in der ersten Lebenswoche signifikant höher als der Blutdruck bei Kindern ohne Hypertonie bei Eltern und/oder Großeltern.

Die Untersuchungen deuten darauf hin, daß beim Neugeborenen renale Prostaglandine bei der Regulation der Urinosmolalität und der Kalium-Ausscheidung beteiligt sind. Die positive Korrelation zwischen PGF-Ausscheidung und Blutdruck wird als möglicher Marker eines genetisch determinierten Einflusses des renalen PG-Systems auf die Blutdruckregulation gedeutet.

Summary

We studied the excretion of prostaglandin (PG) E2 and of PGF in 172 healthy newborns during the first week of life to detect possible biochemical markers for the individual susceptibility to hypertension. PG excretion was compared to urinary electrolytes, urinary osmolality, and blood pressure. In addition, blood pressure of the newborns was related to the blood pressure of the mothers and to the history of hypertension in parents and/or grandparents.

PGE2-excretion increased from 0.7 ng/mg creatinine on the third day to 1.5 ng on the fifth day of life (p<0.001) while PGF excretion remained unchanged at 2 ng/mg creatinine. PGE2 (but not PGF) was inversely correlated to urinary osmolality (p<0.001) while urinary potassium was positively correlated to PGF (p<0.001). On the fifth day of life systolic blood pressure of the newborns was correlated to PGF-excretion and to systolic blood pressure of the mother (p<0.05). Blood pressure was significantly higher in newborns with a history of hypertension in parents or grandparents than in those without hypertension in relatives (p<0.02).

The data suggest that renal PG:s are involved in the regulation of urinary osmolality and potassium excretion in the neonate. The positive correlation between PGF excretion and blood pressure may indicate a genetically determined PG-related renal influence on the level of systemic blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abe K, Yasujima M, Chiba S, Irokawa N, Ito T, Yoshinaga K (1977) Effect of furosemide on urinary excretion of prostaglandin E in normal volunteers and patients with essential hypertension. Prostaglandins 14:513–521

    Google Scholar 

  2. Ahnfelt-Rønne I, Arrigoni-Martelli E (1978) Increased PGF synthesis in renal papilla of spontaneously hypertensive rats. Biochem Pharmacol 27:2363–2367

    Google Scholar 

  3. Aiken JW, Vane JR (1972) Intrarenal prostaglandin release attenuates the renal vasoconstrictor activity of angiotensin. J Pharmacol Exp Ther 184:678–687

    Google Scholar 

  4. Armstrong JM, Blackwell GJ, Flower RJ, McGiff JC, Mullane KM, Vane JR (1976) Genetic hypertension in rats is accompanied by a defect in renal prostaglandin catabolism. Nature 260:582–586

    Google Scholar 

  5. Berl T, Raz A, Wald H, Horowitz J, Czaczkes W (1977) Prostaglandin synthesis inhibition and the action of vasopressin: Studies in man and rat. Am J Physiol 232:F529-F537

    Google Scholar 

  6. Bianchi G, Cusi D, Gatti M, Lupi GP, Ferrari P, Barlassima C, Picotti GB, Bracchi G, Colombo G, Gori D, Velis O, Mazzei D (1979) A renal abnormality as a possible cause of “essential hypertension”. Lancet 1:173–177

    Google Scholar 

  7. Brody MJ, Kadowitz PJ (1974) Prostaglandins as modulators of the autonomic nervous system. Fed Proc 33:48–60

    Google Scholar 

  8. Ducharme DW, Weeks JR, Montgomery RG (1968) Studies on the mechanism of the hypertensive effect of prostaglandin F. J Pharmacol Exp Ther 160:1–10

    Google Scholar 

  9. Dunn MJ, Hood VL (1977) Prostaglandins and the kidney. Am J Physiol 233:F169-F184

    Google Scholar 

  10. Frölich JC, Wilson TW, Sweetman BJ, Smigel M, Nies AS, Carr K, Watson JT, Oates JA (1975) Urinary prostaglandins, identification and origin. J Clin Invest 55:763–770

    Google Scholar 

  11. Galvez OG, Bay WH, Roberts BW, Ferris TF (1977) The hemodynamic effects of potassium deficiency in the dog. Circ Res 40:I-11–I-16

    Google Scholar 

  12. Larsson C, Änggard E (1972) Regional difference in the formation and metabolism of prostaglandins in the rabbit kidney. Eur J Pharmacol 21:30–36

    Google Scholar 

  13. Lee YH, Rosner B, Gould JB, Lowe EW, Kass EH (1976) Familial aggregation of blood pressures of newborn infants and their mothers. Pediatrics 58:722–729

    Google Scholar 

  14. McGiff JC, Itskovitz HD, Terragno A, Wong PYK (1976) Modulation and mediation of the action of the renal kallikreinkinin system by prostaglandins. Fed Proc 35:175–180

    Google Scholar 

  15. Papanicolaou N, Lefkos N, Safar M, Paris M, Bariety J, Milliez M (1976) Direct relationship between urinary prostaglandin E and sodium excretion in essential hypertensive patients. Experientia 32:1280–1281

    Google Scholar 

  16. Pomarède R, Moriette G, Czernichow P, Relier J-P (1978) Etude de la vasopressine plasmatique chez les enfants prématurés soumis a la ventilation artificielle. Arch Franç Pediat [Suppl] 38:75

    Google Scholar 

  17. Scherer B, Siess W, Weber PC (1977) Radioimmunological and biological measurement of prostaglandins in rabbit urine: Decrease of PGE2 excretion at high NaCl intake. Prostaglandins 13:1127–1139

    Google Scholar 

  18. Scherer B, Schnermann J, Sofroniev M, Weber PC (1978) Prostaglandin (PG) analysis in urine of humans and rats by different radioimmunoassays: Effect on PG-excretion by PG-synthetase inhibitors, laparotomy and furosemide. Prostaglandins 15:255–266

    Google Scholar 

  19. Scherer B, Weber PC (1979) Time-dependent changes in prostaglandin excretion in response to frusemide in man. Clin Sci 56:77–81

    Google Scholar 

  20. Scherer B, Held E, Lange HH, Weber PC (1979) Reduced urinary prostaglandin E2-excretion and diminished responsiveness of plasma renin activity in patients with essential hypertension. Klin Wochenschr 57:567–573

    Google Scholar 

  21. De Swiet M, Fancourt R, Peto J (1975) Systolic blood pressure variation during the first 6 days of life. Clin Sci Mol Med 49:557–561

    Google Scholar 

  22. De Swiet M, Fayers P, Shinebourne EA (1976) Blood pressure survey in a population of newborn infants. Br Med J 2:9–11

    Google Scholar 

  23. Tan SY, Sweet P, Mulrow PJ (1978) Impaired renal production of prostaglandin E2. A newly identified lesion in human essential hypertension. Prostaglandins 15:139–150

    Google Scholar 

  24. Terragno NA, McGiff JC, Terragno A (1978) Prostacyclin (PGI2) production by renal blood vessels. Relationship to an endogenous prostaglandin synthesis inhibitor. Clin Res 26:545A

    Google Scholar 

  25. Walker LA, Whorton AR, Smigel M, France R, Frölich JC (1978) Antidiuretic hormone increases renal prostaglandin synthesis in vivo. Am J Physiol 235:F180-F185

    Google Scholar 

  26. Weber PC, Larsson C, Scherer B (1977) Prostaglandin-E2-9-keto-reductase as a mediator of salt-intake related prostaglandin-renin interaction. Nature 266:65–66

    Google Scholar 

  27. Weber PC, Scherer B, Lange HH, Held E, Schnermann J (1978) Renal prostaglandins and renin release: Relationship to regulation of electrolyte excretion and blood pressure. In: Proc. VIIth International Congress of Nephrology, Montreal, 1978. Karger, Basel, pp 99–106

    Google Scholar 

  28. Zinner SH, Margolius HS, Rosner B, Keiser HR, Kass EH (1976) Familial aggregation of urinary kallikrein concentration in childhood: Relation to blood pressure, race and urinary electrolytes. Am J Epidemiol 104:124–132

    Google Scholar 

  29. Zinner SH, Margolius HS, Rosner B, Kass EH (1978) Stability of blood pressure rank and urinary kallikrein concentration in childhood: An eight-year follow-up. Circulation 58:908–915

    Google Scholar 

  30. Zusman RM, Keiser HR, Handler JS (1977) Vasopressin-stimulated prostaglandin E biosynthesis in the toad urinary bladder: Effect on water flow. J Clin Invest 60:1339–1347

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft (Sche 118/3–5)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, B., Friedmann, B., Dumbs, A. et al. Urinary prostaglandins in human neonates: Relationship to kidney function and blood pressure. Klin Wochenschr 58, 449–455 (1980). https://doi.org/10.1007/BF01476799

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01476799

Schlüsselwörter

Key words

Navigation