Skip to main content
Log in

Anterior cruciate ligament reconstruction using cryopreserved irradiated bone-ACL-bone-allograft transplants

  • Clinical and Biomechanical Papers
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Bone-ACL-bone allograft transplantation has been investigated as a potential solution to reconstruction of the anterior cruciate ligament (ACL). To minimize disease transmission (e.g. the acquired immuno deficiency syndrome), bony and collagenous tissues should be sterilized. Recent animal studies indicate that gamma irradiation and ethylene oxide sterilization result in diminished histological and biomechanical properties. The purpose of the present study was biomechanical and histological determination of the fate of deep-frozen gamma-irradiated (2.5 Mrad) canine bone-ACL-bone allografts witb argon gas protection. Particular attention was paid to collagenous and neuroanatomical morphology 3,6 and 12 months after implantation, by comparison to a non-irradiated control group. Sixty skeletally mature foxhounds were operated on in this study, divided up in two groups of 30 dogs each. In group A animals the ACL was replaced by a deep-frozen (−80°C) bone-ACL-bone LAD-augmented allograft subjected to 2.5 Mrad gamma irradiation with argon gas protection. The animals in group B received an LAD-augmented ACL-allograft transplant without gamma irradiation. All knees from both groups were evaluated 3, 6 and 12 months after implantation in regard to biomechanical properties, collagen morphology and routine histology (haematoxylin and eosin stain, polarization microscopy), neuroanatomical morphology (silver and gold chloride stain) and microvasculature (modified Spalteholz technique). The irradiated ACL allografts withstood a maximum load that was 63.8% (718.3N) of the maximum load of normal ACLs after 12 months. By contrast, the non-irradiated allografts failed at 69.1% (780.1 N) of the maximum load of normal control ACLs. The allografts appeared to be developing well-orientated collagen fibres as demonstrated by polarized light microscopy and haematoxylin-eosin staining. Silver stain technique was additionally employed to demonstrate the presence of Golgilike mechanoreceptors and free nerve endings within the allografts. As in the normal ACL, these neurogenic structures were most commonly found near the surface of the allografts and at the two bony attachments. Modified Spalteholtz microangiographic technique demonstrated similar vascularity to normal ACL in the non-irradiated allograft group after 12 months, compared to slight hypervascularization in the irradiated groups. This study showed that irradiated ACL allografts have the potential to attain the main biomechanical and histological properties of the normal ACL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aichroth PM, Jones CB, Thomas NP (1986) Carbon fibers and Dacron composites in the prosthetic reconstruction of the anterior cruciate ligament. J Bone Joint Surg [Br] 68: 841

    Google Scholar 

  2. Andrish JT, Woods LD (1984) Dacron augmentation in anterior cruciate ligament reconstruction in dogs. Clin Orthop 183: 298–302

    Google Scholar 

  3. Arnoczky SP, Rubin RM, Marshall JL (1979) Microvasculature of the cruciate ligaments and its response to injury. J Bone Joint Surg [Am] 61: 1221–1230

    Google Scholar 

  4. Arnoczky SP, Tavin GB, Marshall JL (1982) Anterior cruciate ligament replacement using patellar tendon. J Bone Joint Surg [Am] 64: 217–224

    Google Scholar 

  5. Augustine RW (1956) The unstable knee. Am J Surg 92: 380–388

    Google Scholar 

  6. Bolton CW, Bruchman WC (1985) The Gore-Tex expanded polytetrafluorethylene prosthetic ligament. Clin Orthop 196: 202–213

    Google Scholar 

  7. Bosworth DM, Bosworth BM (1936) Use of fascia lata to stabilize the knee in case of ruptured cruciate ligaments. J Bone Joint Surg [Am] 18: 178–179

    Google Scholar 

  8. Brückner H (1966) Eine neue Methode der Kreuzbandplastik. Chirurg 37: 413–419

    Google Scholar 

  9. Burri C (1980) Grundlagen des Kreuzbandersatzes durch Kohlenstoff. Unfallheilkunde 83: 208–213

    Google Scholar 

  10. Chaband HE, Feagin JA, Rodkey WG (1980) Acute anterior cruciate ligament injury and augmented repair. Am J Sports Med 8: 395–401

    Google Scholar 

  11. Cho KO (1975) Reconstruction of the anterior cruciate ligament by semitendinosus tenodesis. J Bone Joint Surg [Am] 57: 608–612

    Google Scholar 

  12. Clancy WG, Nelson DA, Reider B, Narechania RG (1982) Anterior cruciate ligament reconstruction using one-third of patellar ligament augmented by extraarticular tendon transfer. J Bone Joint Surg [Am] 65: 352–359

    Google Scholar 

  13. Coleman HM (1956) Cruciate ligament repair using meniscus. J Bone Joing Surg [Br] 38: 778

    Google Scholar 

  14. Dahners LE, Burroghs P (1990) The effect of exercise on ligament healing. Transactions of the Orthopaedic Research Society, 36th Annual Meeting, New Orleans, p 57

  15. Ellison AE (1980) Distal iliotibial band-transfer for anterolateral rotatory instability. Clin Orthop 147: 51–55

    Google Scholar 

  16. Engebretsen L, Lew WE, Lewis JL, Hunter RE (1990) The effect of an iliotibial tenodesis on intraarticular graft forces and knee joint motion. Am J Sports Med 18: 169–176

    Google Scholar 

  17. Eriksson E (1976) Reconstruction of the anterior cruciate ligament. Orthop Clin North Am 7: 167–179

    Google Scholar 

  18. Ficat P (1972) Reconstruction du ligament croisé. Rev Chir Orthop [Suppl] 58: 85–92

    Google Scholar 

  19. Friedländer GF (1982) Current concepts review. Bone-banking. J Bone Joint Surg [Am] 64: 307–311

    Google Scholar 

  20. Friedländer GF, Strong DM, Sell KW (1976) Studies of the antigenicity of bone. J Bone Joint Surg [Am] 58: 854–858

    Google Scholar 

  21. Fu FH, Greenwald AS, Olson EJ, Silvaggio VJ (1990) The science of anterior cruciate ligaments. American Academy of Orthopaedic Surgeons 57th Annual Meeting. New Orleans, 1990

  22. Gibbons MJ et al (1991) Effect of gamma irradiation on the initial mechanical and material properties of goat bone-patellar tendon-bone allografts. J Orthop Res 9: 209–218

    Google Scholar 

  23. Gillquist J, Liljedahl SO, Lindvall H (1971) Reconstruction for old rupture of the anterior cruciate ligament. Injury 2: 271–278

    Google Scholar 

  24. Grood ES, Noyes FR (1976) Cruciate ligament prosthesis: strength, creep and fatigue properties. J Bone Joint Surg [Am] 58: 1083–1088

    Google Scholar 

  25. Haut RC, Powlison AC (1990) The effects of test environment and cyclic stretching on the failure properties of human patellar tendons. J Orthop Res 8: 532–540

    Google Scholar 

  26. Hey Groves EW (1917) Operation for the repair of the crucial ligament. Lancet II: 674–679

    Google Scholar 

  27. Jackson DW, Grood ES, Arnoczky SP, Butler DL, Simon TM (1987) Freeze dried anterior cruciate ligament allografts: preliminary studies in a goat model. Am J Sports Med 15: 295–303

    Google Scholar 

  28. Jackson DW, Grood ES, Arnoczky SP, Butler DL, Simon TM (1987) Cruciate reconstruction using freeze dried anterior cruciate ligament allograft and a ligament augmentation device (LAD): an experimental study in a goat model. Am J Sports Med 15: 528–538

    Google Scholar 

  29. Jackson DW, Grood ES, Wilcox P, Butler DL, Simon TM et al (1988) The effects of processing techniques on the mechanical properties of bone-anterior cruciate ligament-bone allografts. An experimental study in goats. Am J Sports Med 16: 101–105

    Google Scholar 

  30. Jackson DW, Windler GE, Simon TM (1990) Intraarticular reaction associated with the use of freeze-dried, ethylene oxidesterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament. Am J Sports Med 18: 1–11

    Google Scholar 

  31. Jäger M, Wirth CJ (1978) Die veraltete anteromediale Kniegelenksinstabilität. Unfallheilkunde 81: 172–177

    Google Scholar 

  32. Jenkins DHR, Forster IW, McKibbin B (1977) Induction of tendon and ligament formation by carbon implants. J Bone Joint Surg [Br] 58: 53–57

    Google Scholar 

  33. Jones KG (1970) Reconstruction of anterior cruciate ligament using the central one-third of the patellar ligament. A followup report. J Bone Joint Surg [Am] 52: 1302–1308

    Google Scholar 

  34. Kennedy JC, Hawkins RJ, Willis RB, Danylchuk KD (1976) Tension studies of human knee ligaments. J Bone Joint Surg [Am] 58: 350–355

    Google Scholar 

  35. Kennedy JC, Alexander IJ, Hayes KC (1982) Nerve suppy of human knee and its functional importance. Am J Sports Med 10: 329–335

    Google Scholar 

  36. Limbird TJ, Shiavi R, Stivers K, Peterson S (1990) Dynamic biomechanical comparison of a combined intra-and extra-articular procedure versus an extra-articular procedure alone or anterior cruciate ligament reconstruction. Transactions of the Orthopaedic Research Society, 36th Annual Meeting, New Orleans, p 82

  37. Limbscomb AB, Johnston RK, Snyder RB, Brother JC (1979) Reconstruction of anterior cruciate ligament in athletes by using the semitendinosus tendon. Am J Sports Med 7: 81–86

    Google Scholar 

  38. Lindemann K (1950) Über den plastischen Ersatz der Kreuzbänder durch gesticlte Sehnenverpflanzungen. Z Orthop 79: 316–334

    Google Scholar 

  39. Matis U, Schäfer E (1973) Zur Frage des Kreuzbandersatzes mit lyophilisierter menschlicher Dura beim Hund. Eine experimentelle Untersuchung. Tierärztl Wochenschr 86: 245–252

    Google Scholar 

  40. McMaster WC (1985) A histological assessment of canine anterior cruciate substitutes with bovine xenograft. Clin Orthop 196: 196–201

    Google Scholar 

  41. McPherson GK, Mendenhall HV, Gibbons DF, Plenk H, Rottmann W, et al (1985) Experimental mechanical and histological evaluation of the Kennedy ligament augmentation device. Clin Orthop Relat Res 180: 186–195

    Google Scholar 

  42. Mendenhall HV, Roth JH, Kennedy JC, Winter GD, Lumb WV (1987) Evaluation of the polypropylene braid as a prosthetic anterior cruciate ligament replacement in the dog. Am J Sports Med 15: 543–546

    Google Scholar 

  43. Nicholas JA (1973) The five-one reconstruction for anteromedial instability of the knee. J Bone Joint Surg [Am] 55: 899–922

    Google Scholar 

  44. Novotny GE, Gommert-Novotny E (1988) Silver impregnation of peripheral and central axons. Stain Technol 63: 1–14

    Google Scholar 

  45. Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and rhesus monkeys. Age related and species related changes. J Bone Joint Surg [Am] 58: 1074–1082

    Google Scholar 

  46. Noyes FR, Keller CS, Grood ES, Butler DL (1984) Advances in the understanding of knee ligament injury, repair and rehabilitation. Med Sports Sci Exerc 19: 427–443

    Google Scholar 

  47. O'Donoghue DH (1963) A method for replacement of the anterior cruciate ligament. J Bone Joint Surg [Am] 45: 905–924

    Google Scholar 

  48. O'Donoghue DH, Frank GR, Jeter GL, Johnson W, Zeiders JW, Kenyon R (1971) Repair and reconstruction of the anterior cruciate ligament in dogs. Fractors influencing long-term results. J Bone Joint Surg [Am] 53: 710–718

    Google Scholar 

  49. Parry DAD, Craig AS (1978) Conagen fibrils and elastic fibers in rat-tail tendon: an electron microscopic investigation. Biopolymers 17: 843–855

    Google Scholar 

  50. Parry MF, Walbach R (1974) Ethylene glycol poisoning. Am J Med 57: 143–150

    Google Scholar 

  51. Paulos L, Noyes FR, Grood E (1981) Knee rehabilitation after anterior cruciate ligament reconstruction and repair. Am J Sports Med 9: 140–149

    Google Scholar 

  52. Paulos LE, Franck EP, Rosenberg TD (1987) Comparative material properties of allograft tissues for ligament replacement. Effects of type, age, sterilization and preservation. Trans Orthop Res Soc 12: 129

    Google Scholar 

  53. Puddu G, Ippolito E (1983) Reconstruction of the anterior cruciate ligament using semitendinosus tendon. Am J Sports Med 11: 14–16

    Google Scholar 

  54. Schultz RA, Miller DC, Kerr CS, Micheli L (1984) Mechanoreceptors in human cruicate ligaments. J Bone Joint Surg [Am] 66: 1072–1076

    Google Scholar 

  55. Schutte MJ, Dabezies EJ, Zimny ML, Haooel LT (1987) Neural anatomy of human anterior cruciate ligaments. J Bone Joint Surg [Am] 69: 243–247

    Google Scholar 

  56. Shino K, Kawasaki T, Hirose H, Gotoh I, Ono K (1984) Replacement of the anterior cruciate ligament by an allogeneic tendon graft. J Bone Joint Surg [Br] 66: 672–681

    Google Scholar 

  57. Slocum DB, Larson RL (1968) Pes anserinus transplantation. A surgical procedure for control of rotatory instability of the knee. J Bone Joint Surg [Am] 50: 226–242

    Google Scholar 

  58. Stark J (1850) Two cases of rupture of the crucial ligament of the knee joint. Edinb Med Surg 74: 267–269

    Google Scholar 

  59. Tipton CM, Schuld RJ, Tomanek RJ, Tcheng TK (1967) Influence of exercise on the strength of knee ligaments in rats. Am J Physiol 212: 83–87

    Google Scholar 

  60. Tipton CM, James L, Mergner WA, Tcheng T (1970) Influence of exercise on strength of medial collateral ligaments in dogs. Am J Physiol 218: 894–902

    Google Scholar 

  61. Tomford WW, Doppelt SH, Mankin HJ, Friedländer GE (1983) 1983 bone bank procedures. Clin Orthop 174: 15–21

    Google Scholar 

  62. Tomford WW, Ploetz JE, Mankin HJ (1986) Bone allografts of femoral heads. J Bone Joint Surg [Am] 68: 534–537

    Google Scholar 

  63. Triamtafyllou N, Sotiropoulos E, Triamtafyllou J (1975) The mechanical properties of the lyophilized and irradiated bone grafts. Acta Orthop Belg 41: 35–45

    Google Scholar 

  64. Trillat A (1973) Chirurgie du genou. Masson, Paris

    Google Scholar 

  65. Wirth CJ, Jäger M (1980) Die operative Therapie veralteter Kapselbandschäden des Kniegelenkes und ihre Ergebnisse. Unfallheilkunde 83: 414–421

    Google Scholar 

  66. Zarins B, Rowe CR (1986) Combined anterior cruciate ligament reconstruction using semitendinosus tendon and iliotibial tract. J Bone Joint Surg [Am] 68: 160–177

    Google Scholar 

  67. Zichner L (1985) Kreuzbandersatz mit heterologen Bindegewebsstrukturen. Unfallchirurgie 2: 238–241

    Google Scholar 

  68. Zimny ML, St Onge M, Schutte M (1985) A modified gold chloride method for demonstration of nerve endings in frozen sections. Stain Technol 60: 305–309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goertzen, M.J., Clahsen, H., Bürrig, K.F. et al. Anterior cruciate ligament reconstruction using cryopreserved irradiated bone-ACL-bone-allograft transplants. Knee Surg, Sports traumatol, Arthroscopy 2, 150–157 (1994). https://doi.org/10.1007/BF01467917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01467917

Key words

Navigation