Skip to main content
Log in

Continuous accretion of a composite cylinder

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A new model is derived for winding of a composite thick-walled cylinder with finite strains. Continuous growth of a cylinder is treated as a limit of successive accretion of built-up portions (thin-walled shells) consisting of a fiber bundles and resin. Due to preload of fibers, a gradient of pressure arises in the cylinder which causes resin flow. Nonlinear partial differential equations are developed which permit stresses and displacements in a wound cylinder to be determined with account for the material accretion and resin flow. At infinitesimal strains, these equations are reduced to a linear Volterra integral equation for pressure on mandrel. This equation is solved numerically to analyze the effect of material and structural parameters on stresses in a wound cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Advani, S. G.: Flow and rheology in polymer composites manufacturing. Amsterdam: Elsevier 1994.

    Google Scholar 

  2. Cai, Z., Gutowski, T., Allen, S.: Winding and consolidation analysis for cylindrical composite structures. J. Compos. Mater.26, 1374–1399 (1992).

    Google Scholar 

  3. Lee, S. Y., Springer, G. S.: Filament winding cylinders: Part I. Process model. J. Compos. Mater.24, 1270–1298 (1990).

    Google Scholar 

  4. Calius, E. P., Lee, S. Y., Springer, G. S.: Filament winding cylinders: Part II. Validation of the process model. J. Compos. Mater.24, 1299–1343 (1990).

    Google Scholar 

  5. Lee, S. Y., Springer, G. S.: Filament winding cylinders: Part III. Selection of the process variables. J. Compos. Mater.24, 1344–1366 (1990).

    Google Scholar 

  6. Tarnopolskii, Y. M., Beil, A. I.: Problems of the mechanics of composite winding. In: Handbook of composites. Vol. 4. Fabrication of composites (Kelly, A., Mileiko, S. T., eds.), pp. 47–108. Amsterdam: North-Holland 1983.

    Google Scholar 

  7. Loos, A. C., Tzeng, J. T.: Filament winding. In: Flow and rheology of polymer composites manufacturing (Advani, S. G., ed.), pp. 571–591. Amsterdam: Elsevier 1994.

    Google Scholar 

  8. Munro, M.: Review of manufacturing of fiber composite components by filament winding. Polymer Compos.9, 352–368 (1988).

    Google Scholar 

  9. Biderman, V. L., Dimitrienko, I. P., Polyakov, V. I., Sukhova, N. A.: Determining residual stresses during the fabrication of fiberglass rings. Mech. Polymers5, 892–898 (1969) [in Russian].

    Google Scholar 

  10. Dewey, B. R., Knight, C. E.: Residual strain distribution in layered rings. J. Compos. Mater.3, 583–585 (1969).

    Google Scholar 

  11. Nikolaev, V. P., Indenbaum, V. M.: Calculation of residual stresses in wound fiberglass articles. Mech. Polymers6, 1026–1030 (1970) [in Russian].

    Google Scholar 

  12. Portnov, G. G., Beil, A. I.: A model accounting for nonlinearities in the material response in the stress analysis for wound composite articles. Mech. Polymers13, 231–240 (1977) [in Russian].

    Google Scholar 

  13. Beil, A. I., Mansurov, A. R., Portnov, G. G., Trincher, V. K.: Models for the force analysis of composite winding. Mech. Compos. Mater.19, 229–238 (1983).

    Article  Google Scholar 

  14. Kim, C., Teng, H., Tucker, C. L., White, S. R.: The continuous curing process for thermoset polymer composites. 1. Modeling and demonstration. J. Compos. Mater.29, 1222–1253 (1995).

    Google Scholar 

  15. Eduljee, R. F., Gillespie, J. W.: Elastic response of post- andin situ consolidated laminated cylinders. Composites27A, 437–446 (1996).

    Google Scholar 

  16. Sala, G., Cutolo, D.: Heated chamber winding of thermoplastic powder-impregnated composites. 1. Technology and basic thermochemical aspects. Composites27A, 387–392 (1996). 2. Influence of degree of impregnation on mechanical properties. Composites27A, 393–399 (1996).

    Google Scholar 

  17. Bolotin, V. V., Vorontsov, A. N., Murzakhanov, R. K.: Analysis of the technological stresses in wound components made out of compos. during the whole duration of the preparation process. Mech. Compos. Mater.16, 361–368 (1980).

    Article  Google Scholar 

  18. Calius, E. P., Springer, G. E.: A model of filament-wound thin cylinders. Int. J. Solids Struct.26, 271–297 (1990).

    Article  Google Scholar 

  19. Arutyunyan, N. K., Drozdov, A. D., Naumov, V. E.: Mechanics of growing viscoelastoplastic bodies. Moscow: Nauka 1987 [in Russian].

    Google Scholar 

  20. Drozdov, A. D.: Finite elasticity and viscoelasticity. Singapore: World Scientific 1996.

    Google Scholar 

  21. Goodman, L. E., Brown, C. B.: Dead load stresses and the instability of slopes. J. Soil Mech. Foundat. Div., Amer. Soc. Civil Eng. Proc.89, 103–134 (1963).

    Google Scholar 

  22. Brown, C. B.: Forces on rigid culverts under high fills. J. Struct. Div., Amer. Soc. Civil Eng. Proc.93, 195–215 (1967).

    Google Scholar 

  23. Brown, C. B., Evans, R. J., LaChapelle, E. R.: Slab avalanching and state of stress in fallen snow. J. Geophys. Res.77, 4570–4580 (1972).

    Google Scholar 

  24. Christiano, P. P., Chantranuluck, S.: Retaining wall under action of accreted backfill. J. Geotechn. Eng. Div., Amer. Soc. Civil Eng. Proc.100, 471–476 (1974).

    Google Scholar 

  25. Brown, C. B., Goodman, L. E.: Gravitational stresses in accreted bodies. Proc. R. Soc. London Ser. A276, 571–576 (1963).

    Google Scholar 

  26. Trincher, V. K.: Formulation of the problem of determining the stress-strain state of a growing body. Mech. Solids19, 119–124 (1984) [in Russian].

    Google Scholar 

  27. Obraztsov, I. F., Paimushin, V. N., Sidorov, I. N.: Formulation of problem of continuous growth of elastic solids. Sov. Phys. Dokl.35, 874–875 (1990).

    Google Scholar 

  28. Zabaras, N., Liu, S.: A theory for small deformation analysis of growing bodies with application to the winding of magnetic tape packs. Acta Mech.111, 95–110 (1995).

    Article  Google Scholar 

  29. Arutyunyan, N. K.: Boundary problem in the creep theory for a built-up body. J. Appl. Math. Mech.41, 783–789 (1977).

    Google Scholar 

  30. Arutyunyan, N. K., Drozdov, A. D.: Mechanics of growing viscoelastic bodies subjected to aging with finite strains. Sov. Phys. Dokl.29, 450–452 (1984).

    Google Scholar 

  31. Arutyunyan, N. K., Drozdov, A. D.: Mechanics of accreted viscoelastic solids subjected to aging at finite deformations. Mech. Compos. Mater.21, 394–405 (1985).

    Article  Google Scholar 

  32. Drozdov, A. D.: Accretion of viscoelastic bodies at finite strains. Mech. Res. Comm.21, 329–334 (1994).

    Article  Google Scholar 

  33. Arutyunyan, N. K., Drozdov, A. D.: Theory of viscoelasto-plasticity for growing solids subjected to aging with finite strains. Sov. Phys. Dokl.30, 372–374 (1985).

    Google Scholar 

  34. Truesdell, C.: A first course in rational continuum mechanics. New York: Academic Press 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drozdov, A.D. Continuous accretion of a composite cylinder. Acta Mechanica 128, 117–135 (1998). https://doi.org/10.1007/BF01463163

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01463163

Keywords

Navigation