Skip to main content
Log in

Experimental radiofrequency (RF) coagulation with computer-based on line monitoring of temperature and power

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

The safety and reliability of radiofrequency coagulative techniques are questioned after each coagulation, especially in functional neurosurgery. In spite of the high level of technical development of modern surgical RF generators there is still uncertainty about the character of the coagulative lesion.

For the present study, a 500 kHz RF generator was connected through a module for analog/digital conversion and for regulation to a personal computer provided with a software programme for the graphic display in real time of the RF power and of the temperature/time curves. The effects of thermocoagulation were studied in fresh egg white, and monopolar lesions were made in the subcortical white matter of rabbits with a probe with a 0.5 mm diameter and a bare tip of 3 mm in length. The regularity of thermocoagulation depends on the accurate temperature reading at the tip of the electrode. The ideal course of the temperature is a smoothly ascending curve from the level of 37 °C to the level present for coagulation, followed by a straight horizontal line. With too slow a response of the probe to temperature changes there is an inherent danger of overheating in the initial phase of the procedure. Additionally the power level has to be adjusted for each probe.

On line monitoring with graphic display of the physical parameters provides a direct control of the course of the coagulation. Regular curves of the physical parameters without temperature overshoot correspond to reproducible lesionsin vitro andin vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts WW, Wright EW Jr, Feinstein B, Bonin G v (1966) Experimental radiofrequency brain lesion size as a function of physical parameters. J Neurosurg 25: 421–431

    PubMed  Google Scholar 

  2. Aronow S (1960) The use of radiofrequency power in making lesions in the brain. J Neurosurg 17: 431–438

    PubMed  Google Scholar 

  3. Bogduk N, Macintosh J, Marsland A (1987) Technical limitations to the efficacy of radiofrequency neurotomy for spinal pain. Neurosurgery 20: 529–535

    Google Scholar 

  4. Bonin G v, Alberts W, Wright EW Jr, Feinstein B (1965) Radiofrequency brain lesions. Size as function of physical parameters. Arch Neurol 12: 25–29

    PubMed  Google Scholar 

  5. Carpenter MB, Whittier JR (1952) Study of methods for producing experimental lesions of central nervous system with special reference to stereotaxic technique. J Comp Neurol 97: 73–131

    PubMed  Google Scholar 

  6. Cosman ER, Nashold BS, Bedenbaugh P (1983) Stereotactic radiofrequency lesion making. Proc of the Amer Soc Stereotactic and Functional Neurosurgery Durham, N.C. 1983. Appl Neurophysiol 46: 160–166

    PubMed  Google Scholar 

  7. Cosman ER, Nashold BS, Ovelman-Levitt J (1984) Theoretical aspects of radiofrequency lesions in the dorsal root entry zone. Neurosurgery 15: 945–950

    PubMed  Google Scholar 

  8. Dieckmann G, Gabriel E, Hassler R (1965) Size, form and structural peculiarities of experimental brain lesions obtained by thermocontrolled radiofrequency. Confin Neurol 26: 134–142

    PubMed  Google Scholar 

  9. Friedman AH, Nashold BS Jr, Ovelman-Levitt J (1984) Dorsal root entry zone lesions for the treatment of post-herpetic neuralgia. J Neurosurg 60: 1258–1262

    PubMed  Google Scholar 

  10. Gabriel E, Faion H, Dieckmann G (1967) Radiofrequency pulsed coagulation — an improved method for controlled thermoelectrode tissue denaturation by determination of electrical and thermal conductivity changes. Confin Neurol 29: 213–219

    PubMed  Google Scholar 

  11. Gildenberg PL (1957) Studies in stereoencephalotomy VIII Comparison of the variability of subcortical lesions produced by various procedures (radio-frequency coagulation, electrolysis, alcohol injection). Confin Neurol 17: 299–309

    PubMed  Google Scholar 

  12. Hassler R, Mundinger F, Riechert T (1979) Stereotaxis in Parkinson syndrome. Springer, Berlin Heidelberg New York, pp176–182

    Google Scholar 

  13. Hunsperger RW, Wyss OAM (1953) Quantitative Ausschaltung von Nervengewebe durch Hochfrequenzkoagulation. Helv Physiol Acta 11: 283–304

    Google Scholar 

  14. Leksell L (1957) Gezielte Hirnoperationen. In: Olivecrona H, Tönnis W (eds) Handbuch der Neurochirurgie, Band VI. Springer, Berlin Göttingen Heidelberg, pp 178–199

    Google Scholar 

  15. Moringlane JR, Samii M (1984) Thermocoagulation of the substantia gelatinosa for the treatment of pain. Neurol Res 6: 79–80

    PubMed  Google Scholar 

  16. Mullan S, Malis M, Karasick J, Vailati G, Beckman F (1965) A reappraisal of the unipolar anodal electrolytic lesion. J Neurosurg 22: 531–538

    PubMed  Google Scholar 

  17. Mundinger F, Riechert T, Gabriel E (1960) Untersuchungen zu den physikalischen und technischen Voraussetzungen einer dosierten Hochfrequenzkoagulation bei stereotaktischen Hirnoperationen. Zbl Chir 19: 1051–1063

    Google Scholar 

  18. Nashold BS Jr, Ostdahl RH (1979) Dorsal root entry zone lesions for pain relief. J Neurosurg 51: 59–69

    PubMed  Google Scholar 

  19. Organ LW (1976/77) Electrophysiologic principles of radiofrequency lesion making. Appl Neurophysiol 39: 69–79

    Google Scholar 

  20. Riechert T (1980) Stereotactic brain operations. Hans Huber Publishers, Bern

    Google Scholar 

  21. Samii M, Moringlane JR (1984) Thermocoagulation of the dorsal root entry zone for the treatment of intractable pain. Neurosurgery 15: 953–955

    PubMed  Google Scholar 

  22. Saris SC, Iacono RP, Nashold BS Jr (1985) Dorsal root entry zone lesions for post-amputation pain. J Neurosurg 62: 72–76

    PubMed  Google Scholar 

  23. Sawyer CH, Everett JW, Green JD (1954) The rabbit diencephalon in Stereotactic coordinates. J Comp Neurol 101: 801–824

    PubMed  Google Scholar 

  24. Smith M (1966) Pathological findings subsequent to Stereotactic lesions. J Neurosurg 24: 443–445

    Google Scholar 

  25. Spiegel EA, Wycis HT (1952) Stereoencephalotomy, Part I. Grune and Stratton, New York, p 13

    Google Scholar 

  26. Spiegel EA, Wycis HT (1962) Stereoencephalotomy, Part II. Grune and Stratton, New York, p 46

    Google Scholar 

  27. Sweet WH, Mark VH, Hamlin H (1960) Radiofrequency lesions in the central nervous system of man and cat. J Neurosurg 17: 213–225

    PubMed  Google Scholar 

  28. Szekely EG (1956) Studies in stereoencephalotomy IV. Variability in the extent of electrolytic lesions. Confin Neurol 16: 11–14

    PubMed  Google Scholar 

  29. Szekely EA, Egyed JJ, Jacoby CG, Moffet R, Spiegel EA (1965) High frequency coagulation by means of a stylet electrode under temperature control. Confin Neurol 26: 146–152

    PubMed  Google Scholar 

  30. Talairach J, Hecaen H, David M, Monnier M, Ajuriaguerra J de (1949) Recherches sur la coagulation therapeutique des structures sous-corticalzes chez l'homme. Rev Neurol 81: 4–24

    Google Scholar 

  31. Van den Berg JW, Van Manen J (1961) Graded coagulation of brain tissue. Acta Physiol Pharmacol Neerland 10: 353–377

    Google Scholar 

  32. Watkins ES (1965) Heat gains in brain during electro-coagulative lesions. J Neurosurg 23: 319–328

    PubMed  Google Scholar 

  33. Zervas NT, Kuwayama A (1972) Pathological characteristics of experimental thermal lesions. J Neurosurg 37: 418–422

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moringlane, J.R., Koch, R., Schäfer, H. et al. Experimental radiofrequency (RF) coagulation with computer-based on line monitoring of temperature and power. Acta neurochir 96, 126–131 (1989). https://doi.org/10.1007/BF01456171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01456171

Keywords

Navigation