Skip to main content
Log in

New approaches to in situ detection of nucleic acids

  • Robert Feulgen Prize Lecture 1995
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The present paper reviews recent results obtained by different molecular biology-based, immunocytological approaches to the localization and identification of nucleic acids in sections of biological material. Examples of sensitive, high-resolution detection methods for RNA, DNA or specialized DNA regions are presented. Special emphasis is placed on the potential values and limitations of these new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bendayan M (1981a) Electron microscopical localization of nucleic acids by means of nuclease-gold complexes. Histochem J 13:699–710

    PubMed  Google Scholar 

  • Bendayan M (1981b) Ultrastructural localization of nucleic acids by the use of enzyme-gold complexes. J Histochem Cytochem 29:531–541

    PubMed  Google Scholar 

  • Bendayan M (1984) Enzyme-gold electron microscopic cytochemistry: a new affinity approach for the ultrastructural localization of macromolecules. J Electron Microsc Techn 1:349–372

    Google Scholar 

  • Bendayan M, Puvion E (1983) Ultrastructural detection of RNA: complementarity of high-resolution autoradiography and of RNase-gold method. J Ultrastruct Res 83:274–283

    PubMed  Google Scholar 

  • Bendayan M, Stephens H (1984) Double labelling cytochemistry applying the protein A-gold technique. In: Polak I Varndell I (eds) Immunolabelling of electron microscopy. Elsevier, Amsterdam, pp 143–154

    Google Scholar 

  • Bendayan M, Nanci A, Kan F (1987) Effect of tissue processing on colloidal gold cytochemistry. J Histochem Cytochem 35:983–996

    PubMed  Google Scholar 

  • Binder M, Tourmente S, Roth J, Renaud M, Gehring W (1986) In situ hybridization at the electron microscope level: localization of transcripts on ultrathin sections of Lowicryl K4M-embedded tissue using biotinylated probes and protein-A-gold complexes. J Cell Biol 102:1646–1653

    PubMed  Google Scholar 

  • Bollum FJ (1963) Intermediate states in enzymatic DNA synthesis. J Cell Comp Physiol 62:61–71

    Google Scholar 

  • Bollum FJ (1974) Terminal deoxynucleotidyl transferase. In: Boyer PD (ed) The enzymes, vol 10. Academic Press, New York, pp 145–171

    Google Scholar 

  • Bouteille M, Dupuy-Coin AM, Moyne G (1975) Methods for localization of proteins and nucleoproteins in the cell nucleus by high resolution autoradiography and cytochemistry. Methods Enzymol 40:3–41

    PubMed  Google Scholar 

  • Cedar H (1975) Transcription of DNA and chromatin with calf thymus RNA polymerase B in vitro. J Mol Biol 95:257–269

    PubMed  Google Scholar 

  • Chang LMS, Bollum FJ (1986) Molecular biology of terminal transferase. Crit Rev Biochem 21:27–52

    Google Scholar 

  • Cheniclet C, Bendayan M (1990) Comparative pyrimidine- and purine-specific RNase-gold labeling on pancreatic acinar cells and isolated hepatocytes. J Histochem Cytochem 38:551–562

    PubMed  Google Scholar 

  • Cheniclet C, Garzon S, Bendayan M (1995) In situ detection of nucleic acids by the nuclease-gold method. In: Morel G (ed) Visualization of nucleic acids. CRC Press, Boca Raton, pp 95–109

    Google Scholar 

  • Craigh SW, Pollard TD (1982) Actin-binding proteins. Trends Biochem Sci 7:88–92

    Google Scholar 

  • Dyer KA, Riley D, Gartler SM (1985) Analysis of inactive X chromosome structure by in situ nick-translation. Chromosoma (Berl) 92:209–213

    Google Scholar 

  • Fakan S (1976) High-resolution autoradiography as a tool for the localization of nucleic acid synthesis and distribution in the mammalian cell nucleolus. J Microsc 106:159–171

    PubMed  Google Scholar 

  • Fakan S (1978) High resolution autoradiography studies on chromatin functions. In: Busch H (ed) The cell nucleus, vol 5, Academic Press, New York, pp 3–53

    Google Scholar 

  • Fakan S (1986) Structural support for RNA synthesis in the cell nucleus. Methods Achiev Exp Pathol 12:105–140

    PubMed  Google Scholar 

  • Fakan S, Modak S (1973) Localization of DNA in ultrathin tissue sections incubated with terminal deoxynucleotidyl transferase, as visualized by electron microscope autoradiography. Exp Cell Res 77:95–104

    PubMed  Google Scholar 

  • Fakan S, Leser G, Martin T (1984) Ultrastructural distribution of nuclear ribonucleoproteins as visualized by immunocytochemistry on thin sections. J Cell Biol 98:358–363

    PubMed  Google Scholar 

  • Ferrarro M, Prantera G (1988) Human NORs show correlation between transcriptional activity, DNase I sensitivity and hypomethylation. Cytogenet Cell Genet 47:58–61

    PubMed  Google Scholar 

  • Gazit B, Cedar H, Lerer I, Voss R (1982) Active genes are sensitive to deoxyribonuclease I during metaphase. Science 217:648–650

    PubMed  Google Scholar 

  • Geuskens M (1977) RNA synthesis initiated in ultrathin sections of plastic-embedded cells and tissues by an exogeneous RNA polymerase. Biol Cell 28:207–214

    Google Scholar 

  • Geuskens M, Recondo A de, Chevaillier P (1975) Autoradiographic demonstration of DNA replication in ultrathin sections of plastic-embedded tissues using an exogeneous DNA polymerase. Chromosoma 52:175–188

    PubMed  Google Scholar 

  • Graaf A de, Van Hemert F, Linnemans WAM, Brakenhoff GJ, Jong L de, Van Renswoude J, Van Driel R (1990) Three-dimensional distribution of DNase I-sensitive chromatin regions in interphase nuclei of embryonal carcinoma cells. Eur J Cell Biol 52:135–141

    PubMed  Google Scholar 

  • Gross D, Garrard W (1988) Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 57:159–197

    PubMed  Google Scholar 

  • Hadjiolov A (1985) The nucleolus and ribosome biogenesis (Cell biology monographs, vol 12) Springer, Vienna New York, pp 1–263

    Google Scholar 

  • Hutchison N, Weintraub H (1985) Localization of DNase I-sensitive sequences to specific regions of interphase nuclei. Cell 43:471–482

    PubMed  Google Scholar 

  • Hutchison N, Langer-Safer P, Ward D, Hamkalo B (1982) In situ hybridization at the electron microscope level: hybrid detection by autoradiography and colloidal gold. J Cell Biol 95:609–618

    PubMed  Google Scholar 

  • Jacob J, Todd K, Birnstiel M, Bird A (1971) Molecular hybridization of3H-labelled ribosomal RNA with DNA in ultrathin sections prepared for electron microscopy. Biochem Biophys Acta 228:761–766

    PubMed  Google Scholar 

  • Kelly R, Cozzarelli NR, Deutscher MP, Lehman IR, Kornberg A (1970) Enzymatic synthesis of deoxyribonucleic acid. XXXII. Replication of duplex deoxyribonucleic acid by polymerase at a single strand break. J Biol Chem 245:39–45

    PubMed  Google Scholar 

  • Kerem BS, Goitein R, Richler C, Marcus M, Cedar H (1983) In situ nick-translation distinguishes between active and inactive X chromosomes. Nature 304:88–90

    PubMed  Google Scholar 

  • Kerem BS, Goitein R, Diamond G, Cedar H, Marcus M (1984) Mapping of DNase I sensitive regions on mitotic chromosomes. Cell 38:493–499

    PubMed  Google Scholar 

  • Knezetic J, Luse D (1986) The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45:95–104

    PubMed  Google Scholar 

  • Krystosek A, Puck TT (1990) The spatial distribution of exposed nuclear DNA in normal, cancer, and reverse-transformed cells. Proc Natl Acad Sci USA 87:6560–6564

    PubMed  Google Scholar 

  • Kuo M, Plunkett W (1985) Nick-translation of metaphase chromosomes. In vitro labeling of nuclease-hypersensitive regions in chromosomes. Proc. Natl Acad Sci USA 82:854–858

    PubMed  Google Scholar 

  • Levitt A, Axel R, Cedar H (1979) Nick-translation of active genes in intact nuclei. Dev Biol 69:496–505

    PubMed  Google Scholar 

  • Manuclidis L, Langer-Safer PR, Ward DC (1982) High resolution mapping of satellite DNA using biotin-labeled DNA probes. J Cell Biol 95:619–625

    PubMed  Google Scholar 

  • McGhee JD, Felsenfeld G (1980) Nucleosome structure. Annu Rev Biochem 49:1115–1156

    PubMed  Google Scholar 

  • Meilhac M, Chambon P (1973) Animal DNA-dependent RNA polymerases. Initiation sites on calf-thymus DNA. Eur J Biochem 35:454–463

    PubMed  Google Scholar 

  • Modak SP, Bollum FJ (1970) Terminal lens cell differentiation. III. Initiator activity of DNA during nuclear degeneration. Exp Cell Res 62:421–432

    PubMed  Google Scholar 

  • Modak SP, Donnelly GM, Karasaki S, Hardin CV, Reddan J, Unakar N (1973) An enzymatic assay for DNA in epoxy-tissue sections by light microscope-autoradiography. Exp Cell Res 76:218–222

    PubMed  Google Scholar 

  • Morel G, Le Guellec D, Mertani H, Tremblean A (1995) In situ hybridization for electron microscopy. In: Morel G (ed) Visualization of nucleic acids. CRC Press, Boca Raton, pp 229–257

    Google Scholar 

  • Morse R, Simpson R (1988) DNA in the nucleosome. Cell 54:285–287

    PubMed  Google Scholar 

  • Murer-Orlando M, Peterson A (1985) In situ nick-translation of human and mouse chromosomes detected with a biotinylated nucleotide. Exp Cell Res 157:322–334

    PubMed  Google Scholar 

  • Olmedilla A, Testillano P, Raska I, Risueno MC (1992) In situ nick-translation and anti-BrdU techniques as convenient tools to study the functional regions of chromatin in plants. Electron Microscopy EUREM 92, Granada, Spain, part 3, pp 193–194

    Google Scholar 

  • Reeves R (1984) Transcriptionally active chromatin. Biochem Biophys Acta 782:348–393

    Google Scholar 

  • Scheer U, Benavente R (1990) Functional and dynamic aspects of the mammalian nucleolus. Bioessays 12:14–21

    PubMed  Google Scholar 

  • Scheer U, Rose K (1984) Localization or RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci USA 81:1431–1435

    PubMed  Google Scholar 

  • Scheer U, Thiry M, Goessens G (1993) Structure, function and assembly of the nucleolus. Trends Cell Biol 3:236–241

    PubMed  Google Scholar 

  • Sippel AE (1973) Purification and characterization of adenosine triphosphate: ribonucleic acid adenyltransferase fromEscherichia coli. Eur J Biochem 37:31–40

    PubMed  Google Scholar 

  • Spector D, Fu XD, Maniatis T (1991) Associations between distinct pre-mRNA splicing components and the cell nucleus. EMBO J 10:3467–3481

    PubMed  Google Scholar 

  • Sperling K, Kerem BS, Goitein R, Kottusch V, Cedar H, Marcus M (1985) DNase I sensitivity in facultative and constitutive heterochromatin. Chromosoma 93:38–42

    PubMed  Google Scholar 

  • Stierhof YD, Schwarz H (1988) Immunoelectronmicroscopy on cryosections section permeability to specific antibodies, protein A-gold complexes and ferritin conjugated IgGs. Institute of Physics Conference Series no. 93 3:519–520

    Google Scholar 

  • Stierhof YD, Schwarz H, Frank H (1986) Transverse sectioning of plastic-embedded immunolabeled cryosections: morphology and permeability to protein A-colloidal gold complexes. J Ultrastruct Res 97:187–196

    Google Scholar 

  • Thiry M (1991a) DNase I-sensitive sites within the nuclear architecture visualized by immunoelectron microscopy. DNA Cell Biol 10:169–180

    PubMed  Google Scholar 

  • Thiry M (1991b) In situ nick-translation at the electron microscope level: a tool for studying the location of DNase I-sensitive regions within the cell. J Cytochem Histochem 39:871–874

    Google Scholar 

  • Thiry M (1992a) Ultrastructural detection of DNA within the nucleolus by sensitive molecular immunocytochemistry. Exp Cell Res 200:135–144

    PubMed  Google Scholar 

  • Thiry M (1992b) Highly sensitive immunodetection of DNA on sections with exogeneous terminal deoxynucleotidyl transferase and non-isotopic nucleotide analogues. J Histochem Cytochem 40:411–419

    PubMed  Google Scholar 

  • Thiry M (1992c) New data concerning the functional organization of the mammalian cell nucleolus: Detection of RNA and rRNA by in situ molecular immunocytochemistry. Nucleic Acids Res 20:6195–6200

    PubMed  Google Scholar 

  • Thiry M (1993a) Ultrastructural distribution of DNA and RNA within the nucleolus of human Sertoli cells as seen by molecular immunocytochemistry. J Cell Sci 105:33–39

    PubMed  Google Scholar 

  • Thiry M (1993b) Immunodetection of RNA on ultrathin sections incubated with polyadenylate nucleotidyl transferase. J Histochem Cytochem 41:657–665

    PubMed  Google Scholar 

  • Thiry M (1993c) Differential location of nucleic acids within interchromatin granule clusters. Eur J Cell Biol 62:259–269

    PubMed  Google Scholar 

  • Thiry M (1994) Cytochemical and immunocytochemical study of coiled bodies in different cultured cell lines. Chromosoma 103:268–276

    PubMed  Google Scholar 

  • Thiry M (1995a) Nucleic acid compartmentalization within the cell nucleus by in situ transferase-immunogold techniques. Microsc Res Techn 31:4–21

    Google Scholar 

  • Thiry M (1995b) Ultrastructural detection of nucleic acids by immunocytology. In: Morel G (ed) Visualization of nucleic acids. CRC Press. Boca Raton, pp 111–135

    Google Scholar 

  • Thiry M (1995c) Behaviour of interchromatin granules during the cell cycle. Eur J Cell Biol (in press)

  • Thiry M, Goessens G (1986) Ultrastructural study of the relationships between the various nucleolar components in Ehrlich tumour and HEp-2 cell nucleoli after acetylation. Exp Cell Res 164:232–242

    PubMed  Google Scholar 

  • Thiry M, Goessens G (1991) Distinguishing the sites of pre-rRNA synthesis and accumulation in Ehrlich tumor cell nucleoli. J Cell Sci 99:759–767

    PubMed  Google Scholar 

  • Thiry M, Goessens G (1992) Where, within the nucleolus, are the rRNA genes located? Exp Cell Res 200:1–4

    PubMed  Google Scholar 

  • Thiry M, Puvion-Dutilleul F (1995) Differential distribution of single-stranded DNA, double-stranded DNA, and RNA in adenovirus-induced intranuclear regions of HeLa cells. J Histochem Cytochem (in press)

  • Thiry M, Thiry-Blaise L (1989) In situ hybridization at the electron microscope level: an improved method for precise localization of ribosomal DNA and RNA. Eur J Cell Biol 50:235–243

    PubMed  Google Scholar 

  • Thiry M, Scheer U, Goessens G (1991a) Localization of nucleolar chromatin by immunocytochemistry and in situ hybridization at the electron microscopic level. Electron Microsc Rev 4:85–110

    PubMed  Google Scholar 

  • Thiry M, Schoonbroodt S, Goessens G (1991b) Cytochemical distinction of various nucleolar components in insect cells. Biol Cell 72:133–140

    PubMed  Google Scholar 

  • Thiry M, Ploton D, Ménager M, Goessens G (1993) Ultrastructural distribution of DNA within the nucleolus of various animal cell lines or tissues revealed by terminal deoxynucleotidyl transferase. Cell Tissue Res 271:33–45

    PubMed  Google Scholar 

  • Vandelaer M, Thiry M, Goessens G (1993) Ultrastructural distribution of DNA with the ring-shaped nucleolus of human resting T lymphocytes. Exp Cell Res 205:430–432

    PubMed  Google Scholar 

  • Visa N, Puvion-Dutilleul F, Bacchellerie JP, Puvion E (1993) Intranuclear distribution of U1 and U2 SnRNAs visualized by high resolution in situ hybridization: revelation of a novel compartment containing U1 but not U2 SnRNA in HeLa cells. Eur J Cell Biol 60:308–321

    PubMed  Google Scholar 

  • Wassef M, Burglen J, Bernhard W (1979) A new method for visualization of preribosomal granules in the nucleolus after acetylation. Biol Cell 34:153–158

    Google Scholar 

  • Wasylyk B, Thevenin G, Oudet P, Chambon P (1979) Transcription of in vitro assembled chromatin byEscherichia coli RNA polymerase. J Mol Biol 128:411–440

    PubMed  Google Scholar 

  • Williams M (1977) Quantitative methods in biology. In: Glauert A (ed) Practical methods in electron microscopy, vol 6. Elsevier North-Holland, Amsterdam, pp 1–216

    Google Scholar 

  • Wolffe A, Drew H (1989) Initiation of transcription on nucleosomal templates. Proc Natl Acad Sci USA 86:9817–9821

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiry, M. New approaches to in situ detection of nucleic acids. Histochem Cell Biol 104, 81–95 (1995). https://doi.org/10.1007/BF01451570

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01451570

Keywords

Navigation