Skip to main content
Log in

Significance of stem cell factor and soluble KIT in patients with systemic lupus erythematosus

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

To determine the significance of stem cell factor (SCF) and soluble KIT (sKIT) in the serum of patients with systemic lupus erythematosus (SLE), levels of SCF and sKIT in patients with SLE were estimated, and their correlations with clinical parameters were examined. The sKIT levels in SLE patients (n=106) were significantly lower than those in healthy controls (n=40). A significant negative correlation was found between the SCF and sKIT levels of SLE patients. Although the SCF levels correlated with the titre of anti-RNP antibody, no significant relationship was found between SCF levels and blood cell counts, such as white blood cell, red blood cell and platelet counts. sKIT levels were significantly correlated with the platelet count, and were negatively correlated with the white blood cell count, titre of anti-DNA antibody, and SLE activity index (SLEDAI). sKIT levels were also negatively affected by high doses of corticosteroid. These results indicate that serum sKIT levels may be more closely related than SCF to the haematological abnormalities in SLE patients, and may reflect the clinical status of SLE patients and the effectiveness of high-dose corticosteroid treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 1987;6:3341–51.

    PubMed  Google Scholar 

  2. Qiu F, Ray P, Brown K, Barker PE, Jhanwar S, Ruddle FH, Besmer P. Primary structure of c-kit relationship with the CSF-1/PJDF receptor kinase family-oncogenic activation of v-kit involves deletion of extracellular domain and C terminus. EMBO J. 1988;7:1003–11.

    PubMed  Google Scholar 

  3. William DE, Eisenman J, Baird C, Pauch K, Van Nesse K, March CJ, et al. Identification of a ligand for the c-kit proto-oncogene. Cell 1990;63:167–174.

    PubMed  Google Scholar 

  4. Flanagan JG, Leder, P. The kit ligand: a cell surface molecule altered in steel mutant alleles. Cell 1990;63:185–94.

    PubMed  Google Scholar 

  5. Zsebo KM, Williams DA, Geissler EN, Broundy VC, Martin FH, Atlins HL, et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 1990;63:213–24.

    PubMed  Google Scholar 

  6. Huang EJ, Nocka KH, Beier DR, Chu T-Y, Buck J, Lahm H-W, et al. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 1990;63:225–33.

    PubMed  Google Scholar 

  7. Carow CE, Hangoc G, Cooper SH, Williams DE, Broxmeyer HE. Mast cell growth factor (c-kit ligand) supports the growth of human multipotential progenitor cells with a high replacing potential. Bloo 1991;78:2216–21.

    Google Scholar 

  8. Bernstein IO, Andrew RG, Zsebo KM. Recombinant human stem cell factor enhances the formation of colonies by CD34+ and CD34+1in cells, and the generation of colony-forming cell progeny from CD34+1in cells cultured with interleukin-3, granulocyte colony-stimulating factor, or granulocyte-macrophage colony-stimulating factor. Blood 1991;77:2316–21.

    PubMed  Google Scholar 

  9. Briddell RA, Bruno E, Cooper RJ, Brandt JE, Hoffman R. Effects of c-kit ligand on in vitro human megakaryocytopoiesis. Blood 1991;78:2854–9.

    PubMed  Google Scholar 

  10. Tsuji K, Lyman SD, Sudo T, Clark SC, Ogawa M. Enhancement of murine haematopoiesis by synergistic interactions between steel factor (ligand c-kit), interleukin-11, and other early acting factors in culture. Blood 1992;9:2855–60.

    Google Scholar 

  11. Gunji Y, Nakamura M, Osawa H, Nagayoshi K, Nakauchi H, Miura Y, et al. Human primitive haematopoietic progenitor cells are more enriched in kit low cells than in kit high cells. Blood 1993;82:3283–9.

    PubMed  Google Scholar 

  12. Turner AM, Bennett LG, Lin NL, Wypych J, Bartley TD, Hunt RW, et al. Identification and characterization of a soluble c-kit receptor produced by human hematopoietic cell lines. Blood 1995;85:2052–8.

    PubMed  Google Scholar 

  13. Broudy VC, Kovach NL, Bennett LG, Lin N, Jacobsen FW, Kidd PG. Human umbilical vein endothelial cells display high-affinity c-kit receptors and produce a soluble form of the c-kit receptor. Blood 1994;83:2145–52.

    PubMed  Google Scholar 

  14. Wypych J, Bennett LG, Schwartz MG, Clogston CL, Lu H-S, Broudy VC, et al. Soluble kit receptor in human serum. Blood 1995;85:66–73.

    PubMed  Google Scholar 

  15. Hashino S, Imamura M, Kobayashi S, Tanaka J, Kasai M, Sakurada K, Asaka M. Soluble c-kit levels in acute GVHD after allogeneic bone marrow transplantations. Br J Haematol 1995;89:897–9.

    PubMed  Google Scholar 

  16. Kawakita M, Yonemura Y, Miyake H, Ohkubo T, Asou N, Hayakawa K, et al. Soluble c-kit molecule in serum from healthy individuals and patients with haemopoietic disorders. Br J Haematol 1995;91:23–9.

    PubMed  Google Scholar 

  17. Schur PH, Sandsor J. Immunologic factors and clinical activity in systemic lupus erythematosus. New Engl J Med 1968;278:533–8.

    PubMed  Google Scholar 

  18. Smith HR, Steinberg AD. Autoimmunity: A perspective. Ann Rev Immunonol 1983;1:175–210.

    Google Scholar 

  19. Stuart RA, Littlewood AJ, Maddison PJ, Hall ND. Elevated serum interleukin-6 levels associated with active disease in systemic connective tissue disorders. Clin Exp Rheumatol 1995;13:17–22.

    PubMed  Google Scholar 

  20. Llorente L, Zou W, Levy Y, Richaud-Patin Y, Wijdenes J, Alcocer-Varela J, et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J Exp Med 1995; 181:839–44.

    PubMed  Google Scholar 

  21. Horwitz DA, Wang H, Gray JD. Cytokine gene profile in circulating blood mononuclear cells from patients with systemic lupus erythematosus: increased interleukin-2 but not interleukin-4 mRNA. Lupus 1994;3:423–8.

    PubMed  Google Scholar 

  22. Wolf RE, Brelsford WG. Soluble interleukin-2 receptors in systemic lupus erythematosus. Arthritis Rheum 1988;31:729–35.

    PubMed  Google Scholar 

  23. Sawada S, Hashimoto H, Iijima S, Tokano Y, Matsukawa Y, Takei M, et al. Increased soluble IL-2 receptor in serum of patients with systemic lupus erythematosus. Clin Rheumatol 1993;12:204–9.

    PubMed  Google Scholar 

  24. Sawada S, Hashimoto H, Iijima S, Tokano Y, Takei M, Shida M, Obara T. Immunologic significance of increased soluble CD8/CD4 molecules in patients with active systemic lupus erythematosus. J Clin Lab Anal 1993;7:141–6.

    PubMed  Google Scholar 

  25. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982;25:1271–7.

    PubMed  Google Scholar 

  26. Fukumori F, Takeuchi N, Hagiwara T, Ohbayashi H, Endo T, Kochibe N, et al. Primary structure of a fucose-specific lectin obtained from a mushroom,Aleuria aurantia. J Biochem 1990;107:190–6.

    PubMed  Google Scholar 

  27. Mattioli M, Reichlin M. Characterization of a soluble nuclear ribonucleoprotein antigen reactive with SLE sera. J Immunol 1971;107:1281–90.

    PubMed  Google Scholar 

  28. Schleider MA. A clinical study of the lupus anticoagulant. Blood 1979;48:499–509.

    Google Scholar 

  29. Koike T, Sueishi T, Funaki H, Tomioka H, Yoshida S. Antiphospholipid antibodies and biological false positive serological test for syphilis in patients with systemic lupus erythematosus. Clin Exp Immunol 1984;56:193–9.

    PubMed  Google Scholar 

  30. Tan EM. Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol 1989;44:93–151.

    PubMed  Google Scholar 

  31. Smeenk MR, Brinkman K, Van den Brink H. Swaak T. A comparison of assays used for the detection of antibodies to DNA. Clin Rheumatol 1990;9:63–73.

    Google Scholar 

  32. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang C-H. The Committee on Prognosis Studies in SLE. Derivation of the SLEDAI: A disease activity index for lupus patients. Arthritis Rheum 1992;35:630–40.

    PubMed  Google Scholar 

  33. Andre C, d'Auriol L, Lacombe C, Gisselbrecht S, Gailibert F. C-kit mRNA expression in human murine haematopoietic cell lines. Oncogene 1989;4:1047–9.

    PubMed  Google Scholar 

  34. Yee NS, Langen H, Besmer, P. Mechanism of kit ligand, phorbol ester, and calcium-induced down regulation of c-kit receptors in mast cells. J Biol Chem 1993;268:14189–4201.

    PubMed  Google Scholar 

  35. Aye MT, Hashemi S, Leclair B, Zeibdawi A, Trudel ZE, Halpenny M, et al. Expression of stem cell factor and c-kit mRNA in cultured endothelial cells, monocyte and cloned human bone marrow stromal cells (CFU-RF). Exp Hematol 1992;20:523–7.

    PubMed  Google Scholar 

  36. Langley KE, Bennett LG, Wypych J, Yancik SA, Liu X-D, Wescott KR, et al. Soluble stem cell factor in human serum. Blood 1993;81:656–60.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitoh, T., Ishikawa, H., Sawada, S. et al. Significance of stem cell factor and soluble KIT in patients with systemic lupus erythematosus. Clin Rheumatol 17, 293–300 (1998). https://doi.org/10.1007/BF01451008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01451008

Keywords

Navigation