Skip to main content
Log in

Ovoids and spreads of finite classical polar spaces

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

LetP be a finite classical polar space of rankr, r⩾2. An ovoidO ofP is a pointset ofP, which has exactly one point in common with every totally isotropic subspace of rankr. It is proved that the polar spaceW n (q) arising from a symplectic polarity ofPG(n, q), n odd andn > 3, that the polar spaceQ(2n, q) arising from a non-singular quadric inPG(2n, q), n > 2 andq even, that the polar space Q(2n + 1,q) arising from a non-singular elliptic quadric inPG(2n + 1,q), n > 1, and that the polar spaceH(n,q 2) arising from a non-singular Hermitian variety inPG(n, q 2)n even andn > 2, have no ovoids.

LetS be a generalized hexagon of ordern (⩾1). IfV is a pointset of order n3 + 1 ofS, such that every two points are at distance 6, thenV is called an ovoid ofS. IfH(q) is the classical generalized hexagon arising fromG 2 (q), then it is proved thatH(q) has an ovoid iffQ(6, q) has an ovoid. There follows thatQ(6, q), q=32h+1, has an ovoid, and thatH(q), q even, has no ovoid.

A regular system of orderm onH(3,q 2) is a subsetK of the lineset ofH(3,q 2), such that through every point ofH(3,q 2) there arem (> 0) lines ofK. B. Segre shows that, ifK exists, thenm=q + 1 or (q + l)/2.If m=(q + l)/2,K is called a hemisystem. The last part of the paper gives a very short proof of Segre's result. Finally it is shown how to construct the 4-(11, 5, 1) design out of the hemisystem with 56 lines (q=3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. Bruen, A. A. and Hirschfeld, J. W. P., ‘The Hermitian Surface’,Geom. Ded. 17, 333–353 (1978).

    Google Scholar 

  2. Bruen, A.A. and Thas, J.A., ‘Partial Spreads, Packings and Hermitian Manifolds’,Math. Z. 151, 207–214 (1976).

    Google Scholar 

  3. Buekenhout, F. and Shult, E., ‘On the Foundations of Polar Geometry’,Geom. Ded. 3, 155–170 (1974).

    Google Scholar 

  4. Cameron, P. J., ‘Partial Quadrangles’,Q. J. Math. Oxford 25, 1–13 (1974).

    Google Scholar 

  5. Cameron, P.J., Thas, J.A. and Payne, S.E., ‘Polarities of Generalized Hexagons and Perfect Codes’,Geom. Ded. 5, 525–528 (1976).

    Google Scholar 

  6. Coxeter, H.S.M., ‘Twelve Points inPG(5, 3) with 95040 Self-transformations’,Proc. Roy. Soc. (A)247, 279–293 (1958).

    Google Scholar 

  7. Dembowski, P.,Finite Geometries, Springer-Verlag, Berlin, Heidelberg, New York, 1968.

    Google Scholar 

  8. Dye, R.H., ‘Partitions and their Stabilizers for Line Complexes and Quadrics’,Ann. Mat. IV,114, 173–194 (1977).

    Google Scholar 

  9. Gewirtz, A., ‘Graphs with Maximal Even Girth’,Can. J. Math. 21, 915–934 (1969).

    Google Scholar 

  10. Hall, M., Lane, R. and Wales, D., ‘Designs derived from Permutation Groups’,J. Comb. Theory 8, 12–22 (1970).

    Google Scholar 

  11. Hill, R., ‘Caps and Groups’,Coll. Int. Teorie Combinatorie, Rome, 1973, pp. 389–394.

  12. Hill, R., ‘Caps and Codes’,Discrete Math. (to appear).

  13. Pellegrino, G., ‘Su una interpretazione geometrica dei gruppiM 11 edM 12 di Mathieu e su alcunit-(ν,k, λ)-disegni deducibili da una (12) 45,3 calotta completa’,Atti Sem. Mat. Fis. Univ. Modena 23, 103–117 (1974).

    Google Scholar 

  14. Segre, B., ‘Introduction to Galois Geometries’,Mem. Accad. Naz. Lincei 8, 133–236 (1967).

    Google Scholar 

  15. Segre, B., ‘Forme e geometrie hermitiane, con particolare riguardo al caso finito’,Ann. Mat. Pura Appl. 70, 1–202 (1965).

    Google Scholar 

  16. Thas, J.A., ‘Two Infinite Classes of Perfect Codes in Metrically Regular Graphs’,J. Comb. Theory (B),23, 236–238 (1977).

    Google Scholar 

  17. Thas, J.A., ‘A Combinatorial Problem’,Geom. Ded. 1, 236–240 (1973).

    Google Scholar 

  18. Thas, J.A., ‘Ovoidal Translation Planes’,Archiv. Math. 23, 110–112 (1972).

    Google Scholar 

  19. Thas, J.A., ‘On 4-Gonal Configurations’,Geom. Ded. 2, 317–326 (1973).

    Google Scholar 

  20. Thas, J.A. and Payne, S.E., ‘Classical Finite Generalized Quadrangles: a Combinatorial Study’,Ars Combin. 2, 57–110 (1976).

    Google Scholar 

  21. Tits, J., ‘Sur la trialité et certains groupes qui s'en déduisent’,Inst. Hautes Etudes Sci. Publ. Math. 2, 14–60 (1959).

    Google Scholar 

  22. Tits, J., Private communication.

  23. Witt, E., ‘Die 5-fach transitiven Gruppen von Mathieu’,Abh. Math. Sem. Hamb. 12, 256–264 (1938).

    Google Scholar 

  24. Yanushka, A., ‘Generalized Hexagons of Order (t, t)’,Israel J. Math. 23, 309–324 (1976).

    Google Scholar 

  25. Kantor, W. M., Private communication.

  26. Thas, J. A., ‘Polar Spaces, Generalized Hexagons and Perfect Codes’,J. Comb. Theory (A)29, 87–93 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thas, J.A. Ovoids and spreads of finite classical polar spaces. Geom Dedicata 10, 135–143 (1981). https://doi.org/10.1007/BF01447417

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447417

Keywords

Navigation