Skip to main content
Log in

Systematic experimental and theoretical studies of the lattice vibrations of host atoms and substitutional Sn impurities in III–V semiconductors

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The lattice vibrations of the two constituent atoms in the III–V semiconductors GaP, GaAs, GaSb, InP, InAs, and InSb have been studied experimentally by neutron diffraction and theoretically by calculations within the framework of various phonon models proposed in the literature for these compounds. The mean-square amplitudes (measured at 295 K) show a general increase with increasing lattice constant and seem furthermore to reflect the partial ionicity of the compounds. The different phonon models for the lattice dynamics are compared with each other and tested critically against the experimental data. Several models are found to be insufficient. The most satisfactory ones are some shell models.

119Sn Mössbauer impurity atoms have been implanted site-selectively on the two different substitutional lattice sites and their Debye temperatures have been determined. A rigorous result relating Debye temperatures of host and impurity atoms permits a simplified interpretation of the experimental results in terms of “Einstein-Debye force constants”. Both lower and higher force constants are deduced for the impurities as compared with the host atoms. Larger force constants are found on V sites than on the III sites for Sn in the Ga compounds, whereas the opposite holds in the In compounds. Further details can be obtained in an extended version of this paper available from the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Welch, B., Eisen, F.H., Higgins, J.S.: J. Appl. Phys.45, 3685 (1974)

    Google Scholar 

  2. Weyer, G., Nylandsted-Larsen, A., Deutch, B.I., Andersen, J.U., Antoncik, E.: Hyperfine Interact.1, 93 (1975)

    Google Scholar 

  3. Petersen, J.W., Nielsen, O.H., Weyer, G., Antoncik, E., Damgaard, S.: Phys. Rev. B21, 4292 (1980)

    Google Scholar 

  4. Goldanskii, V.I., Herber, R.H.: Chemical applications of Mössbauer spectroscopy. New York: Academic Press 1968

    Google Scholar 

  5. Antoncik, E.: Hyperfine Interact.1, 329 (1975)

    Google Scholar 

  6. Nielsen, O.H.: Lattice dynamics of substitutional119mSn in silicon, germanium, and α-tin using an adiabatic bond charge model. Phys. Rev. B25, 1225 (1982)

    Google Scholar 

  7. Mannheim, P.D.: Phys. Rev.165, 1011 (1968)

    Google Scholar 

  8. Mannheim, P.D., Simopoulos, A.: Phys. Rev.165, 845 (1968)

    Google Scholar 

  9. Mannheim, P.D., Cohen, S.S.: Phys. Rev. Rev. B4, 3748 (1971)

    Google Scholar 

  10. Mannheim, P.D.: Phys. Rev. B5, 745 (1972)

    Google Scholar 

  11. Bilz, H., Kress, W.: Phonon dispersion relations in insulators. In: Springer Series in Solid-State Sciences. Vol. 10. Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  12. Weber, W.: Phys. Rev. Lett.33, 371 (1974); Phys. Rev. B15, 4789 (1977)

    Google Scholar 

  13. Weyer, G., Petersen, J.W., Damgaard, S., Nielsen, H.L., Heinemeier, J.: Phys. Rev. Lett.44, 155 (1980)

    Google Scholar 

  14. Weyer, G., Petersen, J.W., Damgaard, S.: Proc. 12th Int. Conf. on Defects in Semiconductors, Amsterdam, 1982. Physica116B, 470 (1983)

    Google Scholar 

  15. Tibbals, J.E., Feteris, S.M., Barnea, Z.: Aust. J. Phys.34, 689 (1981)

    Google Scholar 

  16. Moss, B., McMullan, R.K., Koetzle, T.F.: J. Chem. Phys.73, 495 (1980)

    Google Scholar 

  17. McIntyre, G.J., Moss, G.R., Barnea, Z.: Acta Crystallogr. A36, 482 (1980)

    Google Scholar 

  18. Lehmann, M.S., Larsen, F.K.: Acta Crystallogr. A30, 580 (1974)

    Google Scholar 

  19. Coppens, P.: In: Crystalligraphic computing. Ahmed, F.R. (ed.), p. 255. Copenhagen: Munksgaard 1970

    Google Scholar 

  20. Cooper, M.J.: In: Thermal neutron diffraction. Willis, B.T.M. (ed.) Oxford: Univ. Press 1970

    Google Scholar 

  21. Cooper, M.J.: Acta Crystallogr. A27, 148 (1971)

    Google Scholar 

  22. Merisalo, M., Kurittu, J.: J. Appl. Crystallogr.11, 179 (1978)

    Google Scholar 

  23. Weil, R., Groves, W.O.: J. Appl. Phys.39, 4049 (1968)

    Google Scholar 

  24. Garland, C.W., Park, K.C.: Park: J. Appl. Phys.33, 759 (1962)

    Google Scholar 

  25. Lin, J.T., Chuen Wong: J. Phys. Chem. Solids33, 241 (1972)

    Google Scholar 

  26. Hickernell, F.S., Gayton, W.R.: J. Appl. Phys.37, 462 (1966)

    Google Scholar 

  27. Burenkov, Y.A., Davydov, S.Y., Nikanorov, S.P.: Sov. Phys.-Solid State17, 1446 (1976)

    Google Scholar 

  28. Slutsky, L.J., Garland, C.W.: Phys. Rev.113, 167 (1959)

    Google Scholar 

  29. Bacon, G.E.: In: Neutron diffraction newsletter, February 1977. Yelon, W.B. (ed.), Missouri: University of Missouri Research Reactor Facility Columbia 1977

    Google Scholar 

  30. Becker, J.P., Coppens, P.: Acta Crystallogr. A31, 417 (1975)

    Google Scholar 

  31. Bublik, V.T., Gorelik, S.S.: Krist. Tech.12, 859 (1977)

    Google Scholar 

  32. Shumskii, M.G., Bublik, V.T., Gorelik, S.S., Gorevich, M.A.: Sov. Phys.-Crystallogr.16, 674 (1972) (Kristalligrafiya16, 779 (1971))

    Google Scholar 

  33. Pepe, G., Masri, P., Bienfait, M., Dobrzynski, L.: Acta Cristallogr. A30, 290 (1974)

    Google Scholar 

  34. Liang, K.S., Goenzer, C.S., Bienenstock, A.I.: Bull. Am. Phys. Soc.15, 1637 (1970)

    Google Scholar 

  35. Sirota, N.N.: Acta Crystallogr. A25, 223 (1969)

    Google Scholar 

  36. Brühl, H.-G.: Krist. Tech.15, K83 (1980)

    Google Scholar 

  37. Uno, R., Ukano, P., Yukino, K.: J. Phys. Soc. Jpn.28, 437 (1970)

    Google Scholar 

  38. Arnold, G., Nereson, N.: Phys. Rev.131, 2098 (1963)

    Google Scholar 

  39. Bilderback, D.H., Colella, R.: Phys. Rev. B13, 2479 (1976)

    Google Scholar 

  40. Kyutt, R.N.: Sov. Phys.-Crystallogr.19, 705 (1975) (Kristallografiya19, 1133 (1974))

    Google Scholar 

  41. Yin, M.T., Cohen, M.L.: Phys. Rev. Lett.45, 1004 (1980)

    Google Scholar 

  42. Nielsen, O.H., Weber, W.: J. Phys. C13, 2449 (1980)

    Google Scholar 

  43. Colella, R.: Phys. Rev. B3, 4308 (1971)

    Google Scholar 

  44. Walter, J.P., Cohen, M.L.: Phys. Rev. B4, 1877 (1981)

    Google Scholar 

  45. Humphries, T.P., Srivastava, G.P.: Phys. Status Solidi (b)103, K85 (1981)

    Google Scholar 

  46. Cooper, M.J., Rouse, K.D., Fuess, H.: Acta Crystallogr. A29, 49 (1973)

    Google Scholar 

  47. Maradudin, A.A., Montroll, E.W., Weiss, G.H., Ipatova, I.P.: Theory of lattice dynamics in the harmonic approximation, 2nd Edn. New York: Academic Press 1971

    Google Scholar 

  48. Grow, J.M., Howard, D.G., Nussbaum, R.H., Takeo, M.: Phys. Rev. B17, 15 (1978)

    Google Scholar 

  49. n=0, −3 are special cases:\(\Theta \left( 0 \right) = \left( {{h \mathord{\left/ {\vphantom {h {k_B }}} \right. \kern-\nulldelimiterspace} {k_B }}} \right)\exp \left( {\tfrac{1}{3} + \int\limits_1^\infty {\ln \left( \omega \right)g\left( \omega \right)d\omega } } \right)\) and Θ(−3)=(h/k B )(A/3)−1/3, where g(ω)=Aω2 near ω=0. If the Debye model density of states is used with Eq. (7). it becomes Θ(n)=Θ for alln

  50. Sinha, S.K.: Crit. Rev. Solid State Sci.2, 1 (1971)

    Google Scholar 

  51. Cochran, W.: Crit. Rev. Solid State Sci.4, 273 (1973)

    Google Scholar 

  52. Jaswal, S.S.: In: Proc. Int. Conf. on Lattice Dynamics, 1977. p. 41. Paris: Flammarion 1978; J. Phys. C11, 3559 (1978)

    Google Scholar 

  53. Kunc, K., Balkanski, M., Nusimovici, M.A.: Phys. Rev. B10, 4346 (1975); Phys. Status Solidi (b)71, 341 (1975);72, 229 (1975);72, 249 (1975)

    Google Scholar 

  54. Borcherds, P.H., Kunc, K.: J. Phys. C11, 4145 (1978)

    Google Scholar 

  55. Borcherds, P.H., Kunc, K., Alfrey, G.F., Hall, R.L.: J. Phys. C12, 4699 (1979)

    Google Scholar 

  56. Vetelino, J.F., Guar, S.P., Mitra, S.S.: Phys. Rev. B5, 2360 (1972)

    Google Scholar 

  57. Talwar, D.N., Agarwal, B.K.: Solid State Commun.14, 25 (1974); J. Phys. C7, 2981 (1974). See also Kushwaha, M.S.: Phys. Rev. B24, 2115 (1981)

    Google Scholar 

  58. Reid, J.S.: Acta Crystallogr. A39, 1 (1983)

    Google Scholar 

  59. Kunc, K., Nielsen, O.H.: Comput. Phys. Commun.16, 181 (1979);17, 413 (1979)

    Google Scholar 

  60. Nielsen, O.H., Jaswal, S.S.: Comput. Phys. Commun. (to be published).

  61. Gilat, G.: Methods Comput. Phys.15, 317 (1976)

    Google Scholar 

  62. MacDonald, A.H., Vosko, S.H., Coleridge, P.T.: J. Phys. C12, 2991 (1979)

    Google Scholar 

  63. Lipkin, H.J.: Ann. Phys.26, 115 (1964)

    Google Scholar 

  64. Petersen, J.W., Damgaard, S., Heinemeier, J., Weyer, G.: In: Proc. EPS Conf. on Nuclear Physics Methods in Materials Research. Bethge, K., Baumann, H., Jex, H., Ranch, F. (eds.), p. 448. Braunschweig: Vieweg 1980

    Google Scholar 

  65. Holm, N.E., Weyer, G.: J. Phys. C13, 1109 (1980)

    Google Scholar 

  66. Weyer, G., Nylandsted Larsen, A., Holm, N.E., Nielsen, H.L.: Phys. Rev. B21, 4939 (1980)

    Google Scholar 

  67. Ravn, H., Cartaz, L.C., Denimal, J., Kugler, E., Skareslad, M., Sundell, S., Westgaard, L.: Nucl. Instrum. Methods139, 267 (1976)

    Google Scholar 

  68. Ravn, H.: Phys. Rep.54, 201 (1979)

    Google Scholar 

  69. Mössbauer effect methodology. Gruverman, I.J., Seidel, C.W. (eds.), Vol. 10, p. 301. New York, London: Plenum Press 1976; Nucl. Instrum. Methods186, 201 (1981)

    Google Scholar 

  70. Weyer, G., Damgaard, S., Petersen, J.W., Heinemeier, J.: Phys. Status Solidi (b)98, K147 (1980)

    Google Scholar 

  71. Weyer, G., Damgaard, S., Petersen, J.W., Heinemeier, J.: J. Phys. C13, L181 (1980)

    Google Scholar 

  72. Damgaard, S., Petersen, J.W., Weyer, G.: J. Phys. C14, 993 (1981)

    Google Scholar 

  73. Vandevyver, M., Talwar, D.N., Plumelle, P., Kunc, K., Zigone, M.: Phys. Status Solidi (b)99, 727 (1980)

    Google Scholar 

  74. Vandevyver, M., Talwar, D.N.: Phys. Rev. B21, 3405 (1980)

    Google Scholar 

  75. Yarnell, J.L., Warren, J.L., Wenzel, R.G., Dean, P.J.: In: Neutron inelastic scattering. Vol. 1, p. 301. Vienna: IAEA 1968

    Google Scholar 

  76. Dolling, G., Waugh, J.L.T.: In: Lattice dynamics. Wallis, R.F. (ed.), p. 19. London: Pergamon Press 1965

    Google Scholar 

  77. Kunc, K., Bilz, H.: Solid State Commun.19, 1027 (1976)

    Google Scholar 

  78. Price, D.L., Rose, J.M., Nicklow, R.M.: Phys. Rev. B3, 1268 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, O.H., Larsen, F.K., Damgaard, S. et al. Systematic experimental and theoretical studies of the lattice vibrations of host atoms and substitutional Sn impurities in III–V semiconductors. Z. Physik B - Condensed Matter 52, 99–109 (1983). https://doi.org/10.1007/BF01445290

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01445290

Keywords

Navigation