Skip to main content
Log in

Perturbation theory of nonlinear programs when the set of optimal solutions is not a singleton

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

Given a mathematical programming problem depending on a parameter vectorx, we consider the associated optimal value (marginal) functionϕ(x) and the optimal set-valued multifunctionM(x). The aim of this paper is to investigate continuity and differentiability properties ofϕ(x) andM(x) at a pointx 0 where the corresponding setM(x 0) of optimal solutions isnot asingleton. We show that under certain regularity conditions the multifunctionM(x) is upper Lipschitzian atx 0 andϕ(x) possesses second-order directional derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P. (1984). Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9:87–111.

    Google Scholar 

  2. Ben-Tal, A. and Zowe, J. (1982). A unified theory of first- and second-order conditions for extremum problems in topological vector spaces, Math. Programming Study 19:39–76.

    Google Scholar 

  3. Danskin, J.M. (1967). The Theory of max-min and Its Applications to Weapons Allocation Problems, Springer-Verlag, New York.

    Google Scholar 

  4. Demyanov, V.F. and Malozemov, V.N. (1974). Introduction to mini-max, Wiley, New York.

    Google Scholar 

  5. Dieudonné, J. (1960). Foundations of Modern Analysis, Academic Press, New York.

    Google Scholar 

  6. Gaitsgory, V.A. and Pervozvanskii, A.A. (1986). Perturbation theory for mathematical programming problems, J. Optim. Theory Appl. 49:389–410.

    Google Scholar 

  7. Fiacco, A.V. and McCormick, G.P. (1968). Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, New York.

    Google Scholar 

  8. Fiacco, A.V. (1983). Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York.

    Google Scholar 

  9. Gauvin, J. (1977). A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming, Math. Programming 12:136–138.

    Google Scholar 

  10. Gauvin, J. and Tolle, J.W. (1977). Differential stability in nonlinear programming, SIAM J. Control Optim. 15:294–311.

    Google Scholar 

  11. Gauvin, J. and Dubeau, F. (1982). Differential properties of the marginal function in mathematical programming, Math. Programming Study 19:101–119.

    Google Scholar 

  12. Golshtein, E.G. (1972). Theory of Convex Programming, Trans. Math. Monographs 26, American Mathematical Society, Providence, RI.

    Google Scholar 

  13. Hestenes, M.R. (1975). Optimization Theory—The Finite Dimensional Case, Wiley, New York.

    Google Scholar 

  14. Ioffe, A.D. (1979). Necessary and sufficient conditions for a local minimum. 3: Second-order conditions and augmented duality, SIAM J. Control Optim. 17:266–288.

    Google Scholar 

  15. Janin, R. and Gauvin, J. (1986). Directional sensitivity for optimal solutions in nonlinear mathematical programming, Preprint.

  16. Jittorntrum, K. (1984). Solution point differentiability without strict complementarity in nonlinear programming, Math. Programming Study 21:127–138.

    Google Scholar 

  17. Lancaster, P. (1964). On eigenvalues of matrices dependent on a parameter, Numer. Math. 6:377–387.

    Google Scholar 

  18. Mangasarian, O.L. and Fromovitz, S. (1967). The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Anal. Appl. 7:37–47.

    Google Scholar 

  19. Robinson, S.M. (1981). Some continuity properties of polyhedral multifunctions, Math. Programming Study 14:206–214.

    Google Scholar 

  20. Robinson, S.M. (1982). Generalized equations and their solutions, Part II: Applications to nonlinear programming, Math. Programming Study 19:200–221.

    Google Scholar 

  21. Rockafellar, R.T. (1970). Convex Analysis, Princeton University Press, Princeton, NJ.

    Google Scholar 

  22. Rockafellar, R.T. (1984). Directional differentiability of the optimal value function in a nonlinear programming problem, Math. Programming Study 21:213–226.

    Google Scholar 

  23. Rockafellar, R.T. (1985). Lipschitzian properties of multifunctions, Nonlinear Anal. Theory Methods Appl. 9:867–885.

    Google Scholar 

  24. Shapiro, A. (1985). Second-order derivatives of extremal-value functions and optimality conditions for semi-infinite programs, Math. Oper. Res. 10:207–219.

    Google Scholar 

  25. Shapiro, A. (1985). Second-order sensitivity analysis and asymptotic theory of parametrized nonlinear programs, Math. Programming 33:280–299.

    Google Scholar 

  26. Shapiro, A. Sensitivity analysis of nonlinear programs and differentiability properties of metric projections, SIAM J. Control Optim. (to appear).

  27. Wets, R.J.B. (1973). On inf-compact mathematical programs, Fifth Conference on Optimization Techniques, Part I, Lecture Notes in Computer Sciences 3, pp. 426–436, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Stoer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, A. Perturbation theory of nonlinear programs when the set of optimal solutions is not a singleton. Appl Math Optim 18, 215–229 (1988). https://doi.org/10.1007/BF01443623

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01443623

Keywords

Navigation