Skip to main content
Log in

Control of mRNA processing and decay in prokaryotes

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Post-transcriptional mechanisms operate in regulation of gene expression in bacteria, the amount of a given gene product being also dependent on the inactivation rate of its own message. Moreover, segmental differences in mRNA stability of polycistronic transcripts may be responsible for differential expression of genes clustered in operons. Given the absence of 5′ to 3′ exoribonucleolytic activities in prokaryotes, both endoribonucleases and 3′ to 5′ exoribonucleases are involved in chemical decay of mRNA. As the 3′ to 5′ exoribonucleolytic activities are readily blocked by stem-loop structures which are usual at the 3′ ends of bacterial messages, the rate of decay is primarily determined by the rate of the first endonucleolytic cleavage within the transcripts, after which the resulting mRNA intermediates are degraded by the 3′ to 5′ exoribonucleases. Consequently, the stability of a given transcript is determined by the accessibility of suitable target sites to endonucleolytic activities. A considerable number of bacterial messages decay with a net 5′ to 3′ directionality. Two different alternative models have been proposed to explain such a finding, the first invoking the presence of functional coupling between degradation and the movement of the ribosomes along the transcripts, the second one implying the existence of a 5′ to 3′ processive ‘5′ binding nuclease’. The different systems by which these two current models of mRNA decay have been tested will be presented with particular emphasis on polycistronic transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achord, D. & D. Kennell, 1974. Metabolism of messenger RNA from thegal operon ofEscherichia coli. J. Mol. Biol. 90:581–599.

    PubMed  Google Scholar 

  • Alifano, P., F. Rivellini, D. Limauro, C.B. Bruni & M.S. Carlomagno, 1991. A consensus motif common to all Rho-dependent prokaryotic transcription terminators. Cell 64:553–563.

    PubMed  Google Scholar 

  • Alifano, P., C. Piscitelli, V. Blasi, F. Rivellini, A.G. Nappo, C.B. Bruni & M.S. Carlomagno, 1992. Processing of a polycistronic mRNA requires a 5′ cis element and active translation. Mol. Microbiol. 6:787–798.

    PubMed  Google Scholar 

  • Alifano, P., F. Rivellini, A.G. Nappo, C.B. Bruni & M.S. Carlomagno, 1994. Alternative patterns ofhis operon transcription and mRNA processing generated by metabolic perturbation. Gene, in press.

  • Altman, S., 1975. Biosynthesis of transfer RNA inEscherichia coli. Cell 4:21–29.

    PubMed  Google Scholar 

  • Apirion, D. & N. Watson, 1975. Unaltered stability of newly synthesized RNA in strains ofEscherichia coli missing a ribonuclease specific for double-stranded RNA. Mol. Gen. Genet. 136:317–326.

    Google Scholar 

  • Arraiano, C.M., S.D. Yancey & S.R. Kushner, 1988. Stabilization of discrete breakdown products inams pnp rnb multiple mutants ofEscherichia coli K12. J. Bacteriol. 170:4625–4633.

    PubMed  Google Scholar 

  • Arraiano, C.M., S.D. Yancey & S.R. Kushner, 1993. Identification of endonucleolytic cleavage sites involved in the decay ofEscherichia coli trxA mRNA. J. Bacteriol. 175:1043–10.

    PubMed  Google Scholar 

  • Babitzke, P. & S.R. Kushner, 1991. The ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene ofEscherichia coli. Proc. Natl. Acad. Sci. USA 88:1–5.

    PubMed  Google Scholar 

  • Babitzke, P., L. Granger, J. Olszewski & S.R. Kushner, 1993. Analysis of mRNA decay and rRNA processing inEscherichia coli multiple mutants carrying a deletion in RNaseIII. J. Bacteriol. 175:229–239.

    PubMed  Google Scholar 

  • Båga, M., M. Goransson, S. Normark & B.E. Uhlin, 1988. Processed mRNA with differential stability in the regulation ofE. coli pilin gene expression. Cell 52:197–206.

    PubMed  Google Scholar 

  • Bardwell, J.C.A., P. Regnier, S.-M. Chen, Y. Nakamura, M. Grunberg-Manago & D.L. Court, 1989. Autoregulation of RNase III operon by mRNA processing. EMBO J. 8:3401–3407.

    PubMed  Google Scholar 

  • Barry, G., C. Squires & C.L. Squires. 1980. Attenuation and processing of RNA from therplJL-rpoBC transcription unit ofEscherichia coli. Proc. Natl. Acad. Sci. USA 77:3331–3335.

    PubMed  Google Scholar 

  • Becerril, B., F. Valle, E. Merino, L. Riba & F. Bolivar, 1985. Repetitive extragenic palindromic (REP) sequences in theEscherichia coli gdhA gene. Gene 37:53–62.

    PubMed  Google Scholar 

  • Bechhofer, D.H. & D. Dubnau, 1987. Induced mRNA stability inBacillus subtilis. Proc. Natl. Acad. Sci. USA 84:498–502.

    PubMed  Google Scholar 

  • Bechhofer, D.H. & K.H. Zen, 1989. Mechanism of erythromycin-inducedermC mRNA stability inBacillus subtilis. J. Bacteriol. 171:5803–5811.

    PubMed  Google Scholar 

  • Belasco, J.G. & C.F. Higgins, 1988. Mechanisms of mRNA decay in bacteria: a perspective. Gene 72:15–23.

    PubMed  Google Scholar 

  • Belasco, J.G., J.T. Beatty, C.W. Adams, A. von Gabain & S.N. Cohen, 1985. Differential expression of photosynthesis genes inR. capsulata results from segmental differences in stability within the polycistronicrxcA transcript. Cell 40:171–181.

    PubMed  Google Scholar 

  • Belasco, J.G., G. Nilsson, A. von Gabain & S.N. Cohen, 1986. The stability ofE. coli gene transcripts is dependent on determinants localized to specific mRNA segments. Cell 46:245–251.

    PubMed  Google Scholar 

  • blundell, M. & D. Kennell, 1974. Evidence for endonucleolytic attack in decay oflac messenger RNA inEscherichia coli. J. Mol. Biol. 83:143–161.

    PubMed  Google Scholar 

  • Blundell, M., E. Craig & D. Kennell, 1972. Decay rates of different mRNA inE. coli and models of decay. Nature 238:46–49.

    PubMed  Google Scholar 

  • Bouvet, P. & J.G. Belasco, 1992. Control of RNase E-mediated RNA degradation by 5′ terminal base pairing inE. coli. Nature 360:488–491.

    PubMed  Google Scholar 

  • Burton, Z.F., C.A. Gross, K.K. Watanabe & R.R. Burgess, 1983. The operon that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and DNA primase inE. coli. Cell 32:335–349.

    PubMed  Google Scholar 

  • Cannistraro, V.J. & D. Kennell, 1985. Evidence that the 5′ end oflac mRNA starts to decay as soon as it is synthesized. J. Bacteriol. 161:820–822.

    PubMed  Google Scholar 

  • Cannistraro, V.J., M.N. Subbarao & D. Kennell, 1986. Specific endonucleolytic cleavage sites for decay ofEscherichia coli mRNA. J. Mol. Biol. 192:257–274.

    PubMed  Google Scholar 

  • Carlomagno, M.S., L. Chiariotti, P. Alifano, A.G. Nappo & C.B. Bruni, 1988. Structure and function of theSalmonella typhimurium andEscherichia coli K-12 histidine operons. J. Mol. Biol. 203:585–606.

    PubMed  Google Scholar 

  • Carpousis, A.J., E.A. Mudd & H.M. Krisch, 1989. Transcription and messenger RNA processing of bacteriophage T4 gene59. Mol. Gen. Genet. 219:39–48.

    PubMed  Google Scholar 

  • Carpousis, A.J., G. Van Houwe, C. Ehretsmann & H.M. Krisch, 1994. Copurification ofE. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 76:889–900.

    PubMed  Google Scholar 

  • Casarégola, S., A. Jacq, D. Laoudij, G. McGurk, S. Margarson, M. Tempete, V. Norris & I.B. Holland, 1992. Cloning and analysis of the entireEscherichia coli ams gene. J. Mol. Biol. 228:30–40.

    PubMed  Google Scholar 

  • Case, C.C., E.L. Simons & R.W. Simons, 1990. The IS10 transposase mRNA is destabilized during antisense RNA control. EMBO J. 9:1259–1266.

    PubMed  Google Scholar 

  • Chen, C.-Y.A., J.T. Beatty, S.N. Cohen & J.G. Belasco, 1988. An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient forpuf mRNA stability. Cell 52:609–619.

    PubMed  Google Scholar 

  • Chevrier-Miller, M., N. Jacques, O. Raibaud & M. Dreyfus, 1990. Transcription of single-copy hybridlacZ genes by T7 RNA polymerase inEscherichia coli: mRNA synthesis and degradation can be uncoupled from translation. Nucleic Acids Res. 18:5787–5792.

    PubMed  Google Scholar 

  • Cole, J.R. & M. Nomura, 1986. Changes in the half-life of ribosomal protein messenger RNA caused by translational repression. J. Mol. Biol. 188:383–392.

    PubMed  Google Scholar 

  • Collins, J.J., G.P. Roberts & W.J. Brill, 1986. Posttranscriptional control ofKlebsiella pneumoniae nif mRNA stability by thenifL product. J. Bacteriol. 168:173–178.

    PubMed  Google Scholar 

  • Cormack, R.S. & G.A. Mackie, 1992. Structural requirements for the processing ofEscherichia coli 5S ribosomal RNA by RNase Ein vitro. J. Mol. Biol. 228:1078–1090.

    PubMed  Google Scholar 

  • Cormack, R.S., J.L. Genereaux & G.A. Mackie, 1993. RNase E activity is conferred by a single polypeptide: overexpression, purification, and properties of the ams/rne/hmp1 gene product. Proc. Natl. Acad. Sci. USA 90:9006–9010.

    PubMed  Google Scholar 

  • Craig, E., K. Cremer & D. Schlessinger, 1972. Metabolism of T4 messenger RNA, host messegner RNA and ribosomal RNA in T4-infectedEscherichia coli B. J. Mol. Biol. 71:701–715.

    PubMed  Google Scholar 

  • Deutscher, M.P., 1985. E. coli RNases: making sense of alphabet soup. Cell 40:731–732.

    PubMed  Google Scholar 

  • Deutscher, M.P., 1993. Promiscuous exoribonucleases ofEscherichia coli. J. Bacteriol. 175:4577–4583.

    PubMed  Google Scholar 

  • Di Mari, J.F. & D.H. Bechhofer, 1993. Initiation of mRNA decay inBacillus subtilis. Mol. Microbiol. 7:705–717.

    PubMed  Google Scholar 

  • Donovan, W.P. & S.R. Kushner, 1986. Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover inEscherichia coli. Proc. Natl. Acad. Sci. USA 83:120–124.

    PubMed  Google Scholar 

  • Duffy, J.J., S.G. Chancey & P.D. Boyer, 1972. Incorporation of water oxygen into intracellular nucleotides and RNA. I. Predominantly non-hydrolytic RNA turnover inBacillus subtilis. J. Mol. Biol. 64:565–579.

    PubMed  Google Scholar 

  • Dunn, J.J. & F.W. Studier, 1973. T7 early RNAs andEscherichia coli ribosomal RNAs are cut from large precursor RNAsin vivo by ribonuclease III. Proc. Natl. Acad. Sci. USA 70:3296–3300.

    PubMed  Google Scholar 

  • Dunn, J.J. & F.W. Studier, 1981. Nucleotide sequence from the genetic left end of bacteriophage T7 DNA to the beginning of gene4. J. Mol. Biol. 148:303–330.

    PubMed  Google Scholar 

  • Ehretsmann, C.P., A.J. Carpousis & H.M. Krisch, 1992. Specificity ofEscherichia coli endoribonuclease E:in vivo andin vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev. 6:149–159.

    PubMed  Google Scholar 

  • Emory, S.A. & J.G. Belasco, 1990. TheompA 5′ untranslated RNA segment functions inEscherichia coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency. J. Bacteriol. 172:4472–4481.

    PubMed  Google Scholar 

  • Emory, S.A., P. Bouvet & J.G. Belasco, 1992 A 5′-terminal stemloop structure can stabilize mRNA inEscherichia coli. Genes Dev. 6:135–148.

    PubMed  Google Scholar 

  • Erickson, B.D., Z.F. Burton, K.K. Watanabe & R.R. Burgess, 1985. Nucleotide sequence of the rpsU-dnaG-rpoD operon fromS. typhimurium and a comparison of this sequence with the homologous operon ofE. coli. Gene 40:67–78.

    PubMed  Google Scholar 

  • Faubladier, M., K. Cam & J.-P. Bouche, 1990.Escherichia coli cell division inhibitor DicF-RNA of thedicB operon. Evidence for its generationin vivo by transcription termination and by RNase III and RNase E-dependent processing. J. Mol. Biol. 212:461–471.

    PubMed  Google Scholar 

  • Forchhammer, J., E.N. Jackson & C. Yanofsky, 1972. Different half-lives of messenger RNA corresponding to different segments of the tryptophan operon ofEscherichia coli. J. Mol. Biol. 71:687–699.

    PubMed  Google Scholar 

  • Furuichi, Y., A. Lafiandra & A.J. Shatkin, 1977. 5′-Terminal structure and mRNA stability. Nature 266:235–239.

    PubMed  Google Scholar 

  • Gegenheimer, P. & D. Apirion, 1981. Processing of prokaryotic ribonucleic acid. Microbiol. Rev. 45:502–541.

    PubMed  Google Scholar 

  • Gerdes, K., K. Helin, O.W. Christensen & A. Løhner-Olesen, 1988. Translational control and differential decay are key elements regulating postsegregational expression of the killer protein encoded by theparB locus of plasmid R1. J. Mol. Biol. 203:119–129.

    PubMed  Google Scholar 

  • Gilson, E., J.-M. Clement, D. Brutlag & M. Hofnung, 1984. A family of dispersed repetitive extragenic palindromic DNA sequences inE. coli. EMBO J. 3:1417–1422.

    PubMed  Google Scholar 

  • Goldblum, K. & D. Apirion, 1981. Inactivation of the ribonucleic acid processing enzyme ribonuclease E blocks cell division. J. Bacteriol. 146:128–132.

    PubMed  Google Scholar 

  • Gorski, K., J.M. Roch, P. Prentki & H.M. Krisch, 1985. The stability of bacteriophage T4 gene32 mRNA: a 5′ leader sequence that can stabilize mRNA transcripts. Cell 43:461–469.

    PubMed  Google Scholar 

  • Grahm, M.Y., M. Tal & D. Schlessinger, 1982.lac transcription inEscherichia coli cells treated with chloramphenicol. J. Bacteriol. 151:251–261.

    PubMed  Google Scholar 

  • Guarneros, G., C. Montanez, T. Hernandez & D. Court, 1982. Post-transcriptional control of bacteriophage λint gene expression from a site distal to the gene. Proc. Natl. Acad. Sci. USA 79:238–242.

    PubMed  Google Scholar 

  • Gupta, R.S. & D. Schlessinger, 1976. Coupling of rates of transcription, translation and messenger ribonucleic acid degradation in streptomycin-dependent mutants ofEscherichia coli. J. Bacteriol. 125:84–93.

    PubMed  Google Scholar 

  • Har-El, R., A. Silberstein, J. Kuhn & M. Tal, 1979. Synthesis and degradation of lac mRNA inE. coli depleted of 30S ribosomal subunits. Mol. Gen. Genet. 173:135–144.

    PubMed  Google Scholar 

  • Hattman, S. & P.H. Hofschneider, 1967. Interference of bacteriophage T4 in the reproduction of RNA-phage M12. J. Mol. Biol. 29:173–190.

    PubMed  Google Scholar 

  • Hayashi, M.N. & M. Hayashi, 1985. Cloned DNA sequences that determine mRNA stability of bacteriophage ΦX174in vivo are functional. Nucleic Acids Res. 13:5937–5948.

    PubMed  Google Scholar 

  • Higgins, C.F. & G.F.-L. Ames, 1982. Regulatory regions of two transport operons under nitrogen control: nucleotide sequences. Proc. Natl. Acad. Sci. USA 79:1083–1087.

    PubMed  Google Scholar 

  • Higgins, C.F., G.F.-L. Ames, W.M. Barnes, J.-M. Clement & M. Hofnung, 1982. A novel intercistronic regulatory element of prokaryotic operons. Nature 298:760–762.

    PubMed  Google Scholar 

  • Higgins, C.F., R.S. McLaren & S. Newbury, 1988. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion?—a review. Gene 72:3–14.

    PubMed  Google Scholar 

  • Hirashima, A., G. Childs & M. Inouye, 1973. Different inhibitory effects of antibiotics on the biosynthesis of envelope proteins ofEscherichia coli. J. Mol. Biol. 79:373–389.

    PubMed  Google Scholar 

  • Jain, S.K., B. Pragai & D. Apirion, 1982. A possible complex containing RNA processing enzymes. Biochem. Biophys. Res. Commun. 106:768–778.

    PubMed  Google Scholar 

  • Jain, C. & N. Kleckner, 1993. IS10 mRNA stability and steady state levels inEscherichia coli: indirect effects of translation and role ofrne function. Mol. Microbiol. 9:233–247.

    PubMed  Google Scholar 

  • Janish, R., E. Jacob & P.H. Hofschneider, 1970. Replication of the small coliphage M13: evidence for long-living M13 specific messenger RNA. Nature 227:59–60.

    PubMed  Google Scholar 

  • Kameyama, L., L. Fernandez, D.L. Court & G. Guarneros, 1991. RNase III activation of bacteriophage λ N synthesis. Mol. Microbiol. 5:2953–2963.

    PubMed  Google Scholar 

  • Kenna, M., A. Stevens, M. McCammon & M.G. Douglas, 1993. An essential yeast gene with homology to the exonuclease-encodingXRN1/KEM1 gene also encodes a protein with exoribonuclease activity. Mol. Cell. Biol. 13:341–350.

    PubMed  Google Scholar 

  • Kennell, D.E., 1986. The instability of messenger RNA in bacteria, pp. 101–141 in Maximizing gene expression, edited by W. Reznikoff and L. Gold. Boston: Butterworth.

    Google Scholar 

  • Kennell, D. & I. Bicknell, 1973. Decay of messenger ribonucleic acid from the lactose operon ofEscherichia coli as a function of growth temperature. J. Mol. Biol. 74:21–31.

    PubMed  Google Scholar 

  • Kinscherf, T.G. & D. Apirion, 1975. Polynucleotide phosphorylase can participate in decay of mRNA inEscherichia coli in the absence of ribonuclease II. Mol. Gen. Genet. 139:357–362.

    PubMed  Google Scholar 

  • Klug, G., 1993. The role of mRNA degradation in the regulated expression of bacterial photosynthesis genes. Mol. Microbiol. 9:1–7.

    PubMed  Google Scholar 

  • Klug, G. & S.N. Cohen, 1991. Effects of translation on degradation of mRNA segments transcribed from the polycistronicpuf operon ofRhodobacter capsulatus. J. Bacteriol. 173:1478–1484.

    PubMed  Google Scholar 

  • Klug, G., C.W. Adams, J.G. Belasco, B. Doerge & S.N. Cohen, 1987. Biological consequences of segmental alterations in mRNA stability: effects of deletion of the intercistronic hairpin loop region of theRhodobacter capsulatus puf operon. EMBO J. 6:3515–3520.

    PubMed  Google Scholar 

  • Klug, G., S. Jock & R. Rothfuchs, 1992. The rate of decay ofRhodobacter capsulatus-specificpuf mRNA segments is differentially affected by RNase E activity inEscherichia coli. Gene 121:95–102.

    PubMed  Google Scholar 

  • Kokoska, R.J., S.K. Blumer & D.A. Steege, 1990. Phage f1 mRNA processing inEscherichia coli: search for the upstream products of endonuclease cleavage, requirement for the product of the altered mRNA stability (ams) locus. Biochimie 72:803–811.

    PubMed  Google Scholar 

  • Koraimann, G., C. Schroller, H. Graus, D. Angerer, K. Teferle & G. Hgenauer, 1993. Expression of gene 19 of the conjugative plasmid R1 is controlled by RNaseIII. Mol. Microbiol. 9:717–727.

    PubMed  Google Scholar 

  • Krinke, L. & D.L. Wulff, 1987.OOP RNA, produced from multicopy plasmids, inhibits lambda cII gene expression through an RNaseIII-dependent mechanism. Genes Dev. 1:1005–1013.

    PubMed  Google Scholar 

  • Lasater, L.S. & D.C. Eichler, 1984. Isolation and properties of a single-strand 5′→3′ exoribonuclease from Ehrlich ascites tumor cell nucleoli. Biochemistry 23:4367–4373.

    PubMed  Google Scholar 

  • Levy, S.B., 1972. Very stable prokaryotic messenger RNA in chromosomelessEscherichia coli minicells. Proc. Natl. Acad. Sci. USA 72:2900–2904.

    Google Scholar 

  • Liao, S-M., T. Wu, C.H. Chiang, M.M. Susskind & W.R. McClure, 1987. Control of gene expression in bacteriophage P22 by a small antisense RNA. Genes Dev. 1:197–203.

    PubMed  Google Scholar 

  • Lin-Chao, S. & S.N. Cohen, 1991. The rate of processing and degradation of antisense RNAI regulates the replication of ColE1-type plasmidin vivo. Cell 65:1233–1242.

    PubMed  Google Scholar 

  • Loayza, D., A.J. Carpousis & H.M. Krisch, 1991. Gene32 transcription and mRNA processing in T4-related bacteriophages. Mol. Mirobiol. 5:715–725.

    Google Scholar 

  • Lundberg, U., A. von Gabain & O. Melefors, 1990. Cleavages in the 5′ region of theompA andbla mRNA control stability: studies with anE. coli mutant altering mRNA stability and a novel endoribonuclease. EMBO J. 9:2731–2741.

    PubMed  Google Scholar 

  • MacFarlane, R.S. & M. Merrick, 1985. The nucleotide sequence of the nitrogen regulation genentrB and theglnA-ntrBC intercistronic region ofKlebsiella pneumoniae. Nucleic Acids Res. 13:7591–7606.

    PubMed  Google Scholar 

  • mackie, G.A., 1991. Specific endonucleolytic cleavage of the mRNA for ribosomal protein S20 ofEscherichia coli requires the product of theams genein vivo andin vitro. J. Bacteriol. 173:2488–2497.

    PubMed  Google Scholar 

  • Mackie, G.A., 1991. Secondary structure of the mRNA for ribosomal protein S20. Implications for cleavage by ribonuclease E. J. Biol. Chem. 267:1054–1061.

    Google Scholar 

  • Mangiarotti, G. & D. Schlessinger, 1967. Polyribosome metabolism inEscherichia coli. II. Formation and lifetime of messenger RNA molecules, ribosomal subunit couples and polyribosomes. J. Mol. Biol. 29:395–418.

    Google Scholar 

  • McCarthy, J.E.G., 1990. Post-transcriptional control in the polycistronic operon environment: studies of theatp operon ofEscherichia coli. Mol. Microbiol. 4:1233–1240.

    PubMed  Google Scholar 

  • McCarthy, J.E.G. & C. Gualerzi, 1990. Translational control of prokaryotic gene expression. Trends Genet. 6:78–85.

    PubMed  Google Scholar 

  • McCarthy, J.E.G., B. Gerstel, B. Surin, U. Wiedemann & P. Ziemke, 1991. Differential gene expression from theEscherichia coli atp operon mediated by segmental differences in mRNA stability. Mol. Microbiol. 5:2447–2458.

    PubMed  Google Scholar 

  • McLaren, R.S., S. Newbury, G.S.C. Dance, H.C. Causton & C.F. Higgins, 1991. mRNA degradation by processive 3′−5′ exoribonucleasesin vitro and the implications for procaryotic mRNA decayin vivo. J. Mol. Biol. 221:81–95.

    PubMed  Google Scholar 

  • Melefors, O. & A. von Gabain, 1988. Site-specific endonucleolytic cleavages and the resultion of stability ofE. coli ompA mRNA. Cell 52:893–901.

    PubMed  Google Scholar 

  • Melefors, O. & A. von Gabain, 1991. The same type of endonucleolytic cleavage controlsompA mRNA decay and rRNA processing. Mol. Microbiol. 5:857–864.

    PubMed  Google Scholar 

  • Meyer, B.J. & J.L. Schottel, 1992. Characterization of cat messenger RNA decay suggests that turnover occurs by endonucleolytic cleavage in a 3′ to 5′ direction. Mol. Microbiol. 6:1095–1104.

    PubMed  Google Scholar 

  • Mickzak, A., R.A.K. Srivastava & D. Apirion, 1991. Location of the RNA-processing enzymes RNase III, RNase E and RNase P in theEscherichia coli cell. Mol. Microbiol. 5:1801–1810.

    PubMed  Google Scholar 

  • Misra, T.K. & D. Apirion, 1979. RNase E, an RNA processing enzyme fromEscherichia coli. J. Biol. Chem. 254:11154–11159.

    PubMed  Google Scholar 

  • Mizuno, T., M. Chou & M. Inoue, 1984. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (mic RNA). Proc. Natl. Acad. Sci. USA 81:1966–1970.

    PubMed  Google Scholar 

  • Morikawa, N. & F. Imamoto, 1969. On the degradation of messenger RNA for the tryptophan operon inEscherichia coli. Nature 223: 37–40.

    PubMed  Google Scholar 

  • Morse, D.E. & C. Yanofsky, 1969. Polarity and the degradation of mRNA. Nature 224:329–331.

    PubMed  Google Scholar 

  • Mott, J.E., J.L. Galloway & T. Platt, 1985. Maturation ofEscherichia coli tryptophan operon mRNA: evidence for 3′ exonucleolytic processing after Rho-dependent termination. EMBO J. 4:1887–1891.

    PubMed  Google Scholar 

  • Mudd, E.A. & C.F. Higgins, 1993.Escherichia coli endoribonuclease RNase E: autoregulation of expression and site-specific cleavage of mRNA. Mol. Microbiol. 9:557–568.

    PubMed  Google Scholar 

  • Mudd, E.A., P. Prentki, D. Belin & H.M. Krisch, 1988. Processing of unstable bacteriophage T4 gene 32 mRNA into a stable species requiresEscherichia coli ribonuclease E. EMBO J. 7:3601–3607.

    PubMed  Google Scholar 

  • Mudd, E.A., H.M. Krisch & C.F. Higgins, 1990. RNase E, and endoribonuclease, has a general role in the chemical decay ofEscherichia coli mRNA: Evidence thatrne andams are the same genetic locus. Molecular Microbiology 4:2127–2135.

    PubMed  Google Scholar 

  • Newbury, S.F., N.H. Smith, E.C. Robinson, I.D. Hiles & C.F. Higgins, 1987. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48:297–310.

    PubMed  Google Scholar 

  • Newbury, S.F., N.H. Smith & C.F. Higgins, 1987. Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51:1131–1143.

    PubMed  Google Scholar 

  • Nierlich, D.P., C. Kwan, G.G. Murakawa, P.A. Mahoney, A.W. Ung & D. Caprioglio, 1985. Intercistronic sites in thelac operon, pp. 185–193 in The molecular biology of bacterial growth, edited by M. Schachter, F.C. Neidhardt, J.L. Ingraham and N.O. Kjeldgaard. Jones and Barlett Publishers, Inc, Boston.

    Google Scholar 

  • Nilsson, P. & B.E. Uhlin, 1991. Differential decay of a polycistronicEscherichia coli transcript is initiated by RNaseE-dependent endonucleolytic processing. Mol. Microbiol. 5:1791–1799.

    PubMed  Google Scholar 

  • Nilsson, G., J.G. Belasco, S.N. Cohen & A. von Gabain, 1984. Growth-rate dependent regulation of mRNA stability inEscherichia coli. Nature 312:75–77.

    PubMed  Google Scholar 

  • Nilsson, G., J.G. Belasco, S.N. Cohen & A. von Gabain, 1987. Effect of premature termination of translation on mRNA stability depends on the site of ribosome release. Proc. Natl. Acad. Sci. USA 84:4890–4894.

    PubMed  Google Scholar 

  • Nilsson, G., U. Lundberg & A. von Gabain, 1988.In vivo andin vitro identity of site specific cleavages in the 5′ non-coding region ofompA andbla mRNA inEscherichia coli. EMBO J. 7:2269–2275.

    PubMed  Google Scholar 

  • Ono, M. & M. Kuwano, 1979. A conditional lethal mutation in anEscherichia coli strain with a longer chemical lifetime of mRNA. J. Mol. Biol. 129:343–357.

    PubMed  Google Scholar 

  • Ono, M. & M. Kuwano, 1980. Chromosomal location of a gene for chemical longevity of messenger ribonucleic acid in a temperature-sensitive mutant ofEscherichia coli. J. Bacteriol. 142:325–326.

    PubMed  Google Scholar 

  • Oppenheim, A.B., K.E. Rudd, I. Mendelson & D. Teff, 1993. Integration host factor binds to a unique class of complex repetitive extragenic DNA sequences inEscherichia coli. Mol. Microbiol. 10:113–122.

    PubMed  Google Scholar 

  • Owolabi, J.B. & B.P. Rosen, 1990. Differential mRNA stability controls relative gene expression within the plasmid-encoded arsenical resistance operon. J. Bacteriol. 172:2367–2371.

    PubMed  Google Scholar 

  • Patel, A.M., H.G. Dallmann, E.N. Skakoon, T.D. Kapala & S.D. Dunn, 1990. TheE. coli unc transcription terminator enhances the expression ofuncC encoding the ε subunit of F1-ATPase from plasmids by stabilizing the transcript. Mol. Microbiol. 4:1941–1946.

    PubMed  Google Scholar 

  • Pedersen, S., S. Reeh & J.D. Friesen, 1978. Functional mRNA half lives inE. coli. Mol. Gen. Genet. 166:329–336.

    PubMed  Google Scholar 

  • Pedersen, S., 1984.Escherichia coli ribosomes translatein vivo with variable rate. EMBO J. 3:2895–2898.

    PubMed  Google Scholar 

  • Petersen, C., 1987. The functional stability of thelacZ transcript is sensitive toward sequence alterations immediately downstream of the ribosome binding site. Mol. Gen. Genet. 209:179–187.

    PubMed  Google Scholar 

  • Petersen, C., 1991. Multiple determinants of functional mRNA stability: sequence alterations at either end of thelacZ gene affect the rate of mRNA inactivation. J. Bacteriol. 173:2167–2172.

    PubMed  Google Scholar 

  • Petersen, C., 1992. Control of functional mRNA stability in bacteria: multiple mechanisms of nucleolytic and non-nucleolytic inactivation. Mol. Microbiol. 6:277–282.

    PubMed  Google Scholar 

  • Plamann, M.D. & G.V. Stauffer, 1985. Characterization of a cisacting regulatory mutation that maps at the distal end of theEscherichia coli gdhA gene. J. Bacteriol. 161:650–654.

    PubMed  Google Scholar 

  • Portier, C., L. Dondon, M. Grunberg-Manago & P. Régnier, 1987. The first step in functional inactivation of theEscherichia coli polynucleotide phosphorylase messenger is a ribonuclease III processing at the 5′ end. EMBO J. 6:2165–2170.

    PubMed  Google Scholar 

  • Régnier, P. & M. Grunberg-Manago, 1989. Cleavage by RNase III in the transcripts of themetY-nusA-infB operon ofEscherichia coli release the tRNA and initiates the decay of the downstream mRNA. J. Mol. Biol. 210:293–302.

    PubMed  Google Scholar 

  • Régnier, P. & M. Grunberg-Manago, 1990. RNase III cleavages in non-coding leaders ofEscherichia coli transcripts control mRNA stability and genetic expression. Biochimie 72:825–834.

    PubMed  Google Scholar 

  • Régnier, P. & C. Portier, 1986. Initiation, attenuation and RNase III processing of transcripts from theEscherichia coli operon encoding ribosomal protein S15 and polynucleotide phosphorylase. J. Mol. Biol. 187:23–32.

    PubMed  Google Scholar 

  • Régnier, P. & E. Hajnsdorf, 1991. Decay of mRNA encoding ribosomal protein S15 ofEscherichia coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3′ stabilizing stem and loop structure. J. Mol. Biol. 217:283–292.

    PubMed  Google Scholar 

  • Robertson, H.D., 1982.Escherichia coli ribonuclease III cleavage sites. Cell 30:669–672.

    PubMed  Google Scholar 

  • Saint-Girons, I., N. Duchange, G.N. Cohen & M.M. Zakin, 1984. Structure and autoregulation of themetJ regulatory gene inE. coli. J. Biol. Chem. 259:14282–14286.

    PubMed  Google Scholar 

  • Saito, H. & C.C. Richardson, 1981. Processing of messenger RNA by ribonuclease-III regulates expression of gene1.2 of bacteriophage T7. Cell 27:533–542.

    PubMed  Google Scholar 

  • Salser, W., J. Janin & C. Levinthal, 1968. Measurement of the unstable RNA in exponentially growing cultures ofBacillus subtilis andEscherichia coli. J. Mol. Biol. 31:237–266.

    PubMed  Google Scholar 

  • Sandler, P. & B. Weisblum, 1989. Erythromycin-induced ribosome stall in theermA leader: a barricade to 5′-to-3′ nucleolytic cleavage of theermA transcript. J. Bacteriol. 171:6680–6688.

    PubMed  Google Scholar 

  • Schlessinger, D., K.A. Jacobs, R.S. Gupta, Y. Kano & F. Imamoto, 1977. Decay of individualEscherichia coli trp messenger RNA molecules is sequentially ordered. J. Mol. Biol. 110:421–439.

    PubMed  Google Scholar 

  • Schmeissner, U., K. McKenney, M. Rosenberg & D. Court, 1984. Removal of a terminator structure by RNA processing regulatesint gene expression. J. Mol. Biol. 176:39–53.

    PubMed  Google Scholar 

  • Schneider, E., M. Blundell & D. Kennell, 1978. Translation and mRNA decay. Mol. Gen. Genet. 160:121–129.

    PubMed  Google Scholar 

  • Shen, V., M. Cynamon, B. Daugherty, H.-F. Kung & D. Schlessinger, 1981. Functional inactivation oflac α-peptide mRNA by a factor that purifies withEscherichia coli RNase III. J. Biol. Chem. 256:1896–1902.

    PubMed  Google Scholar 

  • Shimotohno, K., Y. Kodama, J. Hashimoto & K. Miura, 1977. Importance of 5′-terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis. Proc. Natl. Acad. Sci. USA 74:2734–2738.

    PubMed  Google Scholar 

  • Shine, J. & D. Dalgarno, 1974. The 3′-terminal sequence ofEscherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71:1342–1346.

    PubMed  Google Scholar 

  • Singer, M.F. & M. Nomura, 1985. Stability of ribosomal protein mRNA and translational feedback regulation inEscherichia coli. Mol. Gen. Genet. 199:543–546.

    PubMed  Google Scholar 

  • Sohlberg, B., U. Lundberg, F.U. Hartl & A. von Gabain, 1993. Functional interaction of heat-shock protein GroEL with RNase E inE. coli. Proc. Natl. Acad. Sci. USA 90:277–281.

    PubMed  Google Scholar 

  • Stern, M.J., G.F.-L. Ames, N.H. Smith, E.C. Robinson & C.F. Higgins, 1984. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37:1015–1026.

    PubMed  Google Scholar 

  • Stevens, A. & M.K. Maupin, 1987. A 5′→3′ exoribonuclease ofSaccharomyces cerevisiae: size and novel substrate specificity. Arch. Biochem. Biophys. 252:339–347.

    PubMed  Google Scholar 

  • Summers, W.C., 1970. The process of infection with coliphage T7. IV. Stability of RNA in bacteriophage-infected cells. J. Mol. Biol. 51:671–678.

    PubMed  Google Scholar 

  • Takata, R., T. Mukai & K. Hori, 1987. RNA processing by RNaseIII is involved in the synthesis ofE. coli polynucleotide phosphorylase. Mol. Gen. Genet. 209:28–32.

    PubMed  Google Scholar 

  • Taraseviciene, L., A. Miczak & D. Apirion, 1991. The gene specifying RNase E (rne) and a gene affecting mRNA stability (ams) are the same gene. Mol. Microbiol. 5:851–855.

    PubMed  Google Scholar 

  • Tomcsányi, T. & D. Apirion, 1985. Processing enzyme ribonuclease E specifically cleaves RNA I an inhibitor of primer formation in plasmid DNA synthesis. J. Mol. Biol. 185:713–720.

    PubMed  Google Scholar 

  • Ueno-Nishio, S., S. Mango, L. Reitzer & B. Magasanik, 1984. Identification and regulation of theglnL promoter of the complexglnALG operon ofE. coli. J. Bacteriol. 160:379–384.

    PubMed  Google Scholar 

  • Urbanowski, M.L. & G.V. Stauffer, 1985. Nucleotide sequence and biochemical characterization of themetJ gene fromS. typhimurium LT2. Nucleic Acids Res. 13:673–685.

    PubMed  Google Scholar 

  • Uzan, M., R. Favre & E. Brody, 1988. A nuclease that cuts specifically in the ribosome binding site of some T4 mRNAs. Proc. Natl. Acad. Sci. USA 85:8895–8899.

    PubMed  Google Scholar 

  • Valentin-Hansen, P., K. Hammer-Jespersen, F. Boetius & I. Svendson, 1984. Structure and function of the intercistronic regulatorydeoC-deoA element ofEscherichia coli K-12. EMBO J. 3:179–183.

    PubMed  Google Scholar 

  • Varenne, S., J. Buc, R. Lloubes & C. Lazdunski, 1984. Translation is a non-uniform process. J. Mol. Biol. 180:549–576.

    PubMed  Google Scholar 

  • Wong, H.C. & S. Chang, 1986. Identification of a positive retroregulator that stabilizes mRNA's in bacteria. Proc. Natl. Acad. Sci. USA 83:3233–3237.

    PubMed  Google Scholar 

  • Yamamoto, T. & F. Imamoto, 1975. Differential stability oftrp messenger RNA synthesized originating at thetrp promoter andp L promoter of lambdatrp phage. J. Mol. Biol. 92:289–309.

    PubMed  Google Scholar 

  • Yang, Y. & G.F.-L. Ames, 1990. The family of repetitive extragenic palindromic sequences: interaction with DNA gyrase and histone-like protein HU, pp. 211–215 in The Bacterial Chromosome, edited by HK. Drlica and M. Riley. American Society for Microbiology: Washington D.C.

    Google Scholar 

  • Yen, C., L. Green & C.G. Miller, 1980. Peptide accumulation during growth of peptidase-deficient mutants. J. Mol. Biol. 143:35–48.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alifano, P., Bruni, C.B. & Carlomagno, M.S. Control of mRNA processing and decay in prokaryotes. Genetica 94, 157–172 (1994). https://doi.org/10.1007/BF01443430

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01443430

Key words

Navigation