Skip to main content
Log in

Statistical fragmentation of hot atomic metal clusters

  • Clusters
  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

Fragmentation processes of highly excited neutral and charged atomic metal clusters are studied in the framework of an equilibrium statistical model. In the particular case of hot (near and above melting) neutral and charged sodium clusters of 100 and 200 atoms, a microcanonical Metropolis sampling is used to compute mass (or charge) correlation functions as a function of the excitation energy. This method allows to take the strong anharmonicities in the internal phonon spectrum realistically into account which are linked to the internal structural changes like melting. It is found that, at high enough excitation energy, the system exhibits a phase transition. This phase transition is specific for fragmenting finite systems. From the shape of the caloric curve one sees that the two phases involved are connected by a van der Waals loop characterizing a first order phase transition. Here we observe an enhanced fission and multifragmentation into two or more charged clusters with more than 10 atoms each. Various fragment correlations are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Heer, W.: Rev. Mod. Phys.65, 611 (1993)

    Google Scholar 

  2. Brack, M.: Rev. Mod. Phys.65, 677 (1993)

    Google Scholar 

  3. Rayleigh, F.R.S.: Phil. Mag.14, 184 (1882)

    Google Scholar 

  4. Car, R., Parrinello, M.: Phys. Rev. Lett.55, 2471 (1985)

    Google Scholar 

  5. Barnett, R.N., Landman, U., Rajagopal, G.: Phys. Rev. Lett.67, 3058 (1991)

    Google Scholar 

  6. López, M.J., Jellinek, J.: Phys. Rev. A50, 1445 (1994)

    Google Scholar 

  7. Weisskopf, V.F.: Phys. Rev.52, 295 (1937)

    Google Scholar 

  8. Wearasinghe, S., Amar, F.G.: J. Chem. Phys.98, 4967 (1993)

    Google Scholar 

  9. Bertsch, G., Oberhofen, N., Stringari, S.: Z. Phys. D20, 123 (1991)

    Google Scholar 

  10. Hervieux, A.P., Gross, D.H.E.: Z. Phys. D33, 295 (1995)

    Google Scholar 

  11. Brink, D.M., Stringari, S.: Z. Phys. D15, 257 (1990)

    Google Scholar 

  12. Labastie, P., Whetten, R.L.: Phys. Rev. Lett.65, 1567 (1990)

    Google Scholar 

  13. Zhang, X.Z., Gross, D.H.E., Xu, S.Y., Zheng, Y.M.: Nucl. Phys. A461, 668 (1987)

    Google Scholar 

  14. Gross, D.H.E.: Rep. Progr. Phys.53, 605 (1990)

    Google Scholar 

  15. Bréchignac, C., Cahuzac, Ph., Carlier, F., de Frutos, M., Leygnier, J.: Chem. Phys. Lett.189, 28 (1992)

    Google Scholar 

  16. Knopse, O., Schmidt, R., Engel, E., Schmidt, U.R., Dreizler, R.M., Lutz, H.O.: Phys. Lett. A183, 332 (1993)

    Google Scholar 

  17. Pacheco, J.M., Ekardt, W.: Phys. Rev. Lett.68, 3694 (1992).

    Google Scholar 

  18. Röthlisberger, U., Andreoni, W.: J. Chem. Phys.94, 8129 (1991)

    Google Scholar 

  19. Poteau, R., Spiegelmann, F.: J. Chem. Phys.98, 6540 (1993)

    Google Scholar 

  20. Bréchignac, C., Cahuzac, Ph., Carlier, F., de Frutos, M.: Phys. Rev. B49, 2825 (1994)

    Google Scholar 

  21. Bréchignac, C., Cahuzac, Ph., Carlier, F., de Frutos, M., Leygnier, J.: J. Chem. Phys.93, 7449 (1990)

    Google Scholar 

  22. Bréchignac, C., Cahuzac, Ph., Carlier, F., de Frutos, M., Leygnier, J.: J. Chem. Soc. Faraday Trans.86, 2535 (1990)

    Google Scholar 

  23. Lian, L., Su, C.X., Armentrout, P.B.: J. Chem. Phys.97, 4072 (1992)

    Google Scholar 

  24. Lian, L., Su, C.X., Armentrout, P.B.: J. Chem. Phys.97, 4084 (1992)

    Google Scholar 

  25. Näher, U., Göhlich, H., Lange, T., Martin, T.P.: Phys. Rev. Lett.68, 3416 (1992)

    Google Scholar 

  26. Krappe, H.J.: Z. Phys. D23, 269 (1992)

    Google Scholar 

  27. Andrews, G.E.: Encyclopedia of mathematics and its applications. Addison-Wesley, reprinted by Cambridge University Press 1976

  28. Poteau, R., Spiegelmann, F., Labastie, P.: Z Phys. D30, 57 (1994)

    Google Scholar 

  29. Rubinstein, R.Y.: Simulations and the Monte-Carlo method. New York: Wiley 1981

    Google Scholar 

  30. Perdew, J.P.: Phys. Rev. B37, 6175 (1988)

    Google Scholar 

  31. Borelius, G.: Solid State Phys.6, 1 (1963)

    Google Scholar 

  32. Hultgren, R., Orr, R.L., Anderson, P.D., Kelley, K.K.: Selected values of thermodynamic properties of metals and alloys. New York: Wiley 1963

    Google Scholar 

  33. Gross, D.H.E., Zhang, X.Z., Xu, S.Y.: Phys. Rev. Lett.56, 1544 (1986)

    Google Scholar 

  34. Hüller, A.: Z. Phys.93, 401 (1994)

    Google Scholar 

  35. Silberstein, J., Levine, R.D.: J. Chem. Phys.75, 5735 (1981)

    Google Scholar 

  36. Carlier, F.: PhD-thesis, University of Orsay, France 1991

    Google Scholar 

  37. Bréchignac, C., Cahuzac, Ph., Carlier, F., Leygnier, J., Roux, J. Ph.: J. Chem. Phys.102, 1 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, D.H.E., Hervieux, P.A. Statistical fragmentation of hot atomic metal clusters. Z Phys D - Atoms, Molecules and Clusters 35, 27–42 (1995). https://doi.org/10.1007/BF01439980

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01439980

PACS

Navigation