Skip to main content
Log in

Madey's theorems for free-electron devices, spontaneous emission, and applications

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

Two theorems due to Madey occupy a central position in free-electron laser physics: one relates the gain to the derivative of the spontaneous emission line shape and the other one relates it to the derivative of the electron energy spread in stimulated emission. We use quantum mechanical perturbation thoery of first order in the radiation field to give a general derivation of the theorems based on(a) the hermiticity of the electronfield interaction,(b) the applicability of lowest order perturbation theory, and(c) the assumption that the emitted photon have a sufficiently low energy. Assumption(b) restricts the validity of the theorems to the small-signal weak-field regime,(c) to the small recoil regime where the gain is classical. We use scalar quantum electrodynamics in the Furry picture in order to keep effects which are nonlinear in the undulator field, e.g. higher harmonic emission. We consider a fairly general one-dimensional (i.e. not having transverse variations) monochromatic undulator field (magnetic or optical undulator, linear or circular polarization, possible presence of a diffractive medium). An appendix considers nonmonochromatic fields. We derive explicit results for the linearly polarized and the helical undulator allowing for an arbitrary orientation of the undulator axis, the electron beam and the emitted radiation with respect to each other. In particular, we discuss the case of Gaussian modes where the applicability of the first theorem has been questioned. It turns out that the theorem is applicable provided that spontaneous emission into the Gaussian mode in question is considered (more generally, into whatever mode is of interest for the gain).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madey, J.M.J.: Nuovo Cimento B50, 64 (1979)

    Google Scholar 

  2. Madey, J.M.J.: J. Appl. Phys.42, 1906 (1971)

    Google Scholar 

  3. Bonifacio, R., Meystre, P., Moore, G.T., Scully, M.O.: Phys. Rev. A21, 2009 (1980); Kroll, N.M., Morton, P.L., Rosenbluth, M.N.: IEEE J. Quant. Electron. QE-17, 1436 (1981)

    Google Scholar 

  4. Kroll, N.M.: In: Free-electron generators of coherent radiation. Physics of quantum electronics. Jacobs, S.F., Moore, G.T., Pilloff, H.S., Sargent III, M., Scully, M.O., Spitzer, R. (eds.), Vol. 8, p. 315. Reading: Addison-Wesley 1982; Krinsky, S., Wang, J.M., Luchini, P.: J. Appl. Phys.53, 5453 (1982)

    Google Scholar 

  5. Becker, W.: Opt. Commun.36, 64 (1981); see also: Free-electron generators of coherent radiation. Physics of quantum electronics. Vol. 9, Ref. 4, p. 985 (1982)

    Google Scholar 

  6. Kroll, N.M., Rosenbluth, M.N.: J. Phys. (Paris)44, C1–85 (1983)

    Google Scholar 

  7. Luchini, P., Solimeno, S.: IEEE J. Quant. Electron. QE-21, 952 (1985)

    Google Scholar 

  8. Luchini, P., Prisco, G., Solimeno, S.: Proc. SPIE453, 283 (1983)

    Google Scholar 

  9. Prisco, G., Cindolo, F., Solimeno, S.: Opt. Commun.53, 243 (1985)

    Google Scholar 

  10. Colson, W.B., Dattoli, G., Ciocci, F.: Phys. Rev. A31, 828 (1985)

    Google Scholar 

  11. Bambini, A., Renieri, A.: Lett. Nuovo Cimento31, 399 (1978); Stenholm, S.T., Bambini, A.: IEEE J. Quant. Electron. QE-17, 1363 (1981)

    Google Scholar 

  12. Zaretskii, D.F., Nersesov, E.A., Fedorov, M.V.: Zh. Eksp. Teor. Fiz.80, 999 (1981) [Sov. Phys. JETP53, 508 (1981)]; Fedorov M.V.: Progr. Quantum Electronics7, 73 (1981)

    Google Scholar 

  13. Becker, W., Mitter, H., Zs. Phys. B35, 399 (1979); Deck, R.T., Gill, P.G.: Phys. Rev. A26, 423 (1982)

    Google Scholar 

  14. This point is extensively discussed in Appendix B

  15. Gea-Banacloche, J.: Phys. Rev. A31, 1607 (1985)

    Google Scholar 

  16. Becker, W., McIver, J.K.: J. Phys. (Paris)44, C1–289 (1983)

    Google Scholar 

  17. See, e.g., Schweber, S.: Relativistic quantum field theory. New York: Harper and Row 1962

    Google Scholar 

  18. Volkov, D.V.: Z. Phys.94, 250 (1935)

    Google Scholar 

  19. Becker, W.: Phys. Rev. A23, 2381 (1981)

    Google Scholar 

  20. Becker, W., McIver, J.K.: Phys. Rev. A25, 956 (1982); ibid. A31, 783 (1985); Piestrup, M.A.: IEEE J. Quant. Electron. QE-19, 1827 (1983)

    Google Scholar 

  21. Itzykson, C., Zuber, J.B.: Quantum field theory. New York: McGraw-Hill 1980

    Google Scholar 

  22. Bollini, C.G.: Phys. Rev.121, 314 (1961)

    Google Scholar 

  23. Equations (B7) with (B9) agrees with an expansion to lowest order inea of (4.5) if the term proportional to Δω is ignored. It must be kept in mind that in this Appendixk q is defined opposite to the rest of the paper (cp. Fig. 1)

  24. Colson, W.B., Elleaume, P.: Appl. Phys. B29, 101 (1982)

    Google Scholar 

  25. Deacon, D.A.G., Xie, M.: Nucl. Instrum. Methods A237, 295 (1985)

    Google Scholar 

  26. This statement and the next one are not true, in principle. If the dimensions of the resonator cavity decrease so that the eigenmodes become more and more separated, spontaneous emission into modes that do not “fit into the cavity” is inhibited. This effect has been observed in a recent experiment, see Gabrielse, Dehmelt, H.: Phys. Rev. Lett.55, 67 (1985). It has, however, no bearing on the present case. The cavities for FELs are so large that the eigenmodes practically form a continuum

    Google Scholar 

  27. Kuper, T.G., Moore, G.T., Scully, M.O.: Opt. Commun.34, 117 (1980)

    Google Scholar 

  28. Boscolo, I., Gallardo, J.: Appl. Phys. B35, 163 (1984)

    Google Scholar 

  29. Dobiasch, P., Fedorov, M.V., Stenholm, S.: J. Opt. Soc. Am. B4, 1109 (1987); We are indebted to S. Stenholm for communicating this work to us prior to publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, W., McIver, J.K. Madey's theorems for free-electron devices, spontaneous emission, and applications. Z Phys D - Atoms, Molecules and Clusters 7, 353–372 (1988). https://doi.org/10.1007/BF01439805

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01439805

PACS

Navigation