Skip to main content
Log in

Reactive scattering of sodium clusters with molecular oxygen

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

The first reactive differential scattering study for atomic clusters is reported. Oxidation of Na x (x≦8) with O2 is investigated in a crossed beam apparatus. Sodium oxide (Na n O,n≦4) and sodium dioxide (Na n O2,n≦6) are produced with a total reactive cross section from 50 to 80 Å2, depending on the cluster size. The excess energies for these reactions are estimated by an SCF type ab initio calculation and range from 0.5 to 5 eV. The large cross section may then be understood quantitatively in terms of a harpooning mechanism as a first step in the reaction path. Angular distributions have been determined for the most abundant products, showing strong forward scattering. Two different schemes are discussed for the reaction: while the dioxides Na n O2 may be formed by an evaporative cooling process from a highly excited collision complex, formation of Na n O appears to originate from a direct process. In both cases the experimental data suggest that most of the exothermicity remains in the reaction products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Heer, W.A., Knight, W.D., Chou, M.Y., Cohen, M.L.: Solid State Phys.40, 93 (1987)

    Google Scholar 

  2. Wang, C.R., Pollack, S., Kappes, M.M.: Chem. Phys. Lett.166, 26 (1990)

    Google Scholar 

  3. Knight, W.D., Clemenger, K., de Heer, W.A., Saunders, W.A., Chou, M.Y., Cohen, M.L.: Phys. Rev. Lett.52, 2141 (1984)

    Google Scholar 

  4. Martin, T.P., Bergmann, T., Göhlich, H., Lange, T.: Chem. Phys. Lett.172, 209 (1990)

    Google Scholar 

  5. Riley, S.J., Parks, E.K., Pobo, L.G., Wexler, S.: Ber. Bunsenges. Phys. Chem.88, 287 (1984)

    Google Scholar 

  6. Trevor, D.J., Whetten, R.L., Cox, D.M., Kaldor, A.: J. Am. Chem. Soc.107, 518 (1985)

    Google Scholar 

  7. Jarrold, M.F.: In: Bimolecular collisions, Ashfold, M.N.R., Baggott, J.E. (eds.). London: Royal Soc. Chem. (1989)

    Google Scholar 

  8. Peterson, K.I., Dao, P.D., Castleman, A.W. Jr.: J. Chem. Phys.79, 777 (1983)

    Google Scholar 

  9. Dao, P.D., Peterson, K.I., Castleman, A.W.: J. Chem. Phys.80, 563 (1984)

    Google Scholar 

  10. Lange, T., Göhlich, H., Näher, U., Martin, T.P.: Chem. Phys. Lett.192, 544 (1992)

    Google Scholar 

  11. Herschbach, D.R.: Faraday Discuss.33, 149 (1962); Birely, J.H., Hermn, R.R., Wilson, K.R., Herschbach, D.R.: J. Chem. Phys.47, 993 (1967); Miller, W.B., Safran, S.A., Herschbach, D.R.: Faraday Discuss.44, 108 (1967)

    Google Scholar 

  12. Goerke, A., Palm, H., Schulz, C.P., Spiegelmann, F., Hertel, I.V.: J. Chem. Phys.98, 9635 (1993)

    Google Scholar 

  13. Kappes, M.M., Schär, M., Röthlisberger, U., Yeretzian, C., Schumacher, E.: Chem. Phys. Lett.143, 251 (1988)

    Google Scholar 

  14. Dudourd, Ph., Rayane, D., Labastie, P., Pintar, B., Chevaleyre, J., Broyer, M., Wöste, L., Wolf, J.P.: J. Phys. IV C7, 509 (1991)

    Google Scholar 

  15. Bréchingnac, C., Cahuzac, Ph., Roux, J.Ph., Pavolini, D., Spiegelmann, F.: J. Chem. Phys.87, 5694 (1987)

    Google Scholar 

  16. Poteau, R., Spiegelmann, F.: Phys. Rev. B45, 1878 (1992)

    Google Scholar 

  17. Langhoff, S.R., Partrigde, H., Bauschlicher, C.W. Jr.: Chem. Phys.153, 1 (1991)

    Google Scholar 

  18. Schleyer, P.v.R., Würthwein, E.-U., Pople, J.A.: J. Am. Chem. Soc.104, 5839 (1982); Schleyer, P.v.R., Würthwein, E.-U., Kaufmann, E., Clark, T., Pople, J.A.: J. Am. Chem. Soc.105, 5930 (1983); Würthwein, E.-U., Schleyer, P.v.R., Pople, J.A.: J. Am. Chem. Soc.106, 6973 (1984)

    Google Scholar 

  19. Häser, M., Ahlrichs, R.: J. Comput. Chem.10, 104 (1989); Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C.: Chem. Phys. Lett.162, xx (1989)

    Google Scholar 

  20. Huzinaga, S.: Approximate atomic functions I, II. Alberta: University of Alberta (1971)

    Google Scholar 

  21. Magee, J.L.: J. Chem. Phys.8, 687 (1940)

    Google Scholar 

  22. Celotta, R.L., Bennet, R.A., Hall, J.L., Siegel, M.W., Levine, J.: Phys. Rev. A6, 631 (1972)

    Google Scholar 

  23. Goerke, A.: Dissertation, Albert-Ludwigs-Universität Freiburg (1993)

  24. We have also measured the total scattering cross section by looking at depletion of the Na x intensity in the cluster beam after passing a gas cell. A preliminary evaluation of the data for O2 and N2 have shown, that the reactive part (as determined by the difference between the O2 and the N2 total cross section) are in the same range (50 to 120 Å2).

  25. See e.g. Levine, R.D., Bernstein, R.B.: Molecular reaction dynamics and chemical reactivity. Oxford, New York: (1987)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goerke, A., Leipelt, G., Palm, H. et al. Reactive scattering of sodium clusters with molecular oxygen. Z Phys D - Atoms, Molecules and Clusters 32, 311–320 (1995). https://doi.org/10.1007/BF01437275

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01437275

PACS

Navigation