Skip to main content
Log in

Atomic hydrogen in circularly polarized, high-intensity and high frequency laser fields

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

We present the application of a recently developed nonperturbative theory for electronatom interactions in intense, high-frequency laser fields to the calculation of the structure of atomic hydrogen in a monochromatic, circularly polarized plane wave. This theory predicts that the atom is stable in the high-frequency limit and that the levels are given by a time-independent Schrödinger equation containing a “dressed” Coulomb potential. The laser frequency and intensity enter only combined in a parameter α0. The energy eigenvalue equation was solved in the angular momentum representation by adopting the “decoupledl-channels approximation”. The weak field limit (α0 → 0) of the levels could be solved analytically using perturbation theory. Our numerical calculation gives the eigenvalues corresponding to principal quantum numbern≦4, over an extended range of α0:0≦α0≦100. The results are compared with those for the case of linear polarization obtained earlier by a similar approximation. The rapid decrease of the ionization potential at fixed (high) frequency and increasing intensity shows a remarkable resemblance in the two cases. This decrease is shown to be connected with a steady increase with α0 of the average of the radial coordinater, such that the atom in its ground state may attain Rydberg sizes at values of α0 presently achieved in experiment. Further, the existence of a new symmetry in the strong field limit (α0→∞) is signalled, leading to a peculiar multiplet structure. Finally, predictions are made concerning the energy spectrum of the electrons ionized at high (but finite) frequencies. In contrast to current experiments, no suppression of peaks can occur in our case, and large shifts of the peaks towards higher energies in comparison to the weak field case are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rhodes, C.K.: Science229, 1345 (1985); Luk, T.S., Johann, U., Jara, H., McIntyre, I., McPherson, A., Schwarzenbach, A.P., Boyer, K., Rhodes, C.K.: In: High intensity laser processes. Alcock, A.J. (ed.), Vol. 664, p. 223. Proceeding of SPIE 1986

    Google Scholar 

  2. Gavrila, M., Kaminski, J.Z.: Phys. Rev. Lett.52, 613 (1984), and to be submitted for publication

    Google Scholar 

  3. Gavrila, M.: In: Atoms in unusual situations. Briand, J.P. (ed.), Vol. 143, p. 225. NATO ASI series B. New York: Plenum Press, 1987

    Google Scholar 

  4. Offerhaus, M.J., Kaminski, J.Z., Gavrila, M.: Phys. Lett. A112, 151 (1985)

    Google Scholar 

  5. Gavrila, M., Offerhaus, M.J., Kaminski, J.Z.: Phys. Lett. A118, 331 (1986)

    Google Scholar 

  6. Van de Ree, J., Kaminski, J.Z., Gavrila, M.: Phys. Rev. A37, 4536 (1988)

    Google Scholar 

  7. Pont, M., Gavrila, M.: Phys. Lett. A123, 469 (1987)

    Google Scholar 

  8. Hippler, R., Schwier, H., Humpert, H.J., Lutz, H.O.: Z. Phys. D — Atoms, Molecules and Clusters5, 21 (1987)

    Google Scholar 

  9. Bucksbaum, P.H., Bashkansky, M., Freeman, R.R., McIlrath, T.J., Dimauro, L.F.: Phys. Rev. Lett.56, 2590 (1986)

    Google Scholar 

  10. Yergeau, F., Petite, G., Agostini, P.: J. Phys. B19, L 663 (1986)

  11. Reiss, H.R.: Phys. Rev. A22, 1786 (1980); J. Phys. B20, L 79 (1987)

    Google Scholar 

  12. Muller, H., Tip, A.: Phys. Rev. A30, 3039 (1984)

    Google Scholar 

  13. Chen, B., Faisal, F.H.M., Jetzke, S., Lutz, H.O., Scanzano, P.: Phys. Rev. A36, 4091 (1987)

    Google Scholar 

  14. Kramers, H.A.: Collected scientific papers, p. 866. Amsterdam: North Holland 1956

    Google Scholar 

  15. Henneberger, W.C.: Phys. Rev. Lett.21, 838 (1968)

    Google Scholar 

  16. Faisal, F.H.M.: J. Phys. B6, L 89 (1973)

    Google Scholar 

  17. Gavrila, M., Kaminski, J.Z.: (to be published)

  18. Chan, K. Choi, Henneberger, W., Sanders, F.S.: Phys. Rev. A9, 1985 (1974)

    Google Scholar 

  19. Lima, C.A.S., Miranda, L.C.M.: Phys. Rev.23, 3335 (1981)

    Google Scholar 

  20. Lima, C.A.S., Miranda, L.C.M.: In: Essays in theoretical physics. Parry, W.E. (ed.), p. 129. Oxford, New York: Pergamon Press 1984

    Google Scholar 

  21. Landgraf, T.C., Leite, J.R., Almeida, N.S., Lima, C.A.S., Miranda, L.C.M.: Phys. Lett.92A, 131 (1982)

    Google Scholar 

  22. Gersten, J.I., Mittleman, M.H.: J. Phys. B9, 2561 (1976)

    Google Scholar 

  23. Mittleman, M.H.: Theory of laser-atom interactions, Chap. 3. New York: Plenum 1982

    Google Scholar 

  24. Abramowitz, M., Stegun, I.: Handbook of mathematical functions, p. 590. New York: Dover 1965

    Google Scholar 

  25. Durand, E.: Electrostatique et magnétostatique, p. 52. Paris: Masson 1953

    Google Scholar 

  26. Pont, M., Gavrila, M.: (to be published)

  27. Messiah, A.: Quantum mechanics, Vol. 2, Appendix C. Amsterdam: North Holland 1961

    Google Scholar 

  28. Pasternack, S., Sternheimer, R.M.: J. Math. Phys.3, 1280 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pont, M., Offerhaus, M.J. & Gavrila, M. Atomic hydrogen in circularly polarized, high-intensity and high frequency laser fields. Z Phys D - Atoms, Molecules and Clusters 9, 297–306 (1988). https://doi.org/10.1007/BF01436936

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01436936

PACS

Navigation