Skip to main content
Log in

Use of recombinant inbred strains to map genes of aging

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Recombinant inbred strains have been used in a number of organisms for segregation and linkage analysis of quantitative traits. One major advantage of the recombinant inbred (RI) methodology is that the genetic identity of individuals within a strain permits replicate measures of the same recombinant genotype. Such replicability is important for traits such as aging inDrosophila, where phenotypic expression is highly influenced by different environmental conditions. RI strain methodology has an added advantage for DNA marker-based linkage analysis of traits measured over the lifespan of the organism. The DNA can be extracted from individuals of the same genotype as those measured in a longevity study. In this paper an argument is presented for the use of a set of recombinant inbred strains to map the quantitative trait loci involved in the aging process inDrosophila. A unique use of a set of stable, transposable moleular markers to trace the quantitative trait loci involved is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnault, C., A. Heizmann, C. Loevenbruck & C. Biémont, 1991. Environmental stresses and mobilization of transposable elements in inbred lines ofDrosophila melanogaster. Mut. Res. 248:51–60.

    Google Scholar 

  • Bailey, D. W., 1981. Recombinant inbred strains and bilineal congenic strains, pp. 223–239 in The Mouse in Biomedical Research, Vol. 1, edited by H. L. Foster, J. D. Small & J. G. Fox: Academic Press, New York.

    Google Scholar 

  • Bailey, D. W., 1971. Recombinant-inbred strains: An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation 11: 325–327.

    PubMed  Google Scholar 

  • Belknap, J. K., 1992. Empirical estimates of Bonferroni corrections for use in chromosome mapping studies with the BXD recombinant inbred mouse strains. Beh. Gen. 22: 677–684.

    Google Scholar 

  • Biémont, C., 1992. Population genetics of transposable elements: aDrosophila point of view. Genetica 86: 67–84.

    PubMed  Google Scholar 

  • Bodmer, W. F., 1986. Human genetics: The molecular challenge. Cold Spring Harbor Symposia on Quantitative Biology 51: 1–13.

    Google Scholar 

  • Botstein, D., R. L. White, M. Skolnick & R. W. Davis, 1980. Construction of a genetic map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314–331.

    PubMed  Google Scholar 

  • Briles, D. E., W. H. Benjamin, W. J. Huster & B. Posey, 1986. Genetic approaches to the study of disease resistance: With special emphasis on the use of recombinant inbred mice. Current Topics in Microbiology and Immunology 124: 21–35.

    PubMed  Google Scholar 

  • Burr, B. & F. A. Burr, 1991. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. TIG, Vol. 7, No. 2, 55–60.

    PubMed  Google Scholar 

  • Charlesworth, B. & A. Lapid, 1989). A study of ten families of transposable elements on X chromosomes from a population ofDrosophila melanogaster. Genet. Res. 54: 113–125.

    PubMed  Google Scholar 

  • Clark, A., 1987. Senescence and the genetic correlation hang-up. Am. Nat. 129: 932–940.

    Google Scholar 

  • Clarke, J. M. & J. Maynard Smith, 1955. The genetics and cytology ofDrosophila subobscura XI. Hybrid vigor and longevity. J. Genetics 53: 172–180.

    Google Scholar 

  • Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences, 3rd ed. Academic Press, New York.

    Google Scholar 

  • Copeland, N. G. & N. A. Jenkins, 1991. Development and applications of a molecular genetic linkage map of the mouse genome. Trends Genet. 7: 113–118.

    PubMed  Google Scholar 

  • Cornall, R. J., T. J. Aitman, C. M. Hearne & J. A. Todd, 1991. The generation of a library of PCR-analyzed microsatellite variants for genetic mapping of the mouse genome. Genomics 10: 874–881.

    PubMed  Google Scholar 

  • Curtsinger, J. W., H. H. Fukui, D. R. Townsend & J. W. Vaupel, 1992. Demography of Genotypes: Failure of the Limited Life-Span Paradigm inDrosophila melanogaster. Science 258: 461–463.

    PubMed  Google Scholar 

  • Dear, K. B. G., M. Salazar, A. L. M. Watson, R. S. Gelman, R. Bronson & E. J. Yunis, 1992. Traits that influence longevity in mice: a second look. Genetics 132: 229–239.

    PubMed  Google Scholar 

  • Démant, P. & A. A. M. Hart, 1986. Recombinant Congenic Strains — A New Tool for Analyzing Genetic Traits Determined by More Than One Gene. Immunogenetics 24: 416–422.

    PubMed  Google Scholar 

  • Dietrich, W., H. Katz, S. E. Lincoln, H-S. Shin, J. Friedman, N. C. Dracopoli & E. S. Lander, 1992. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131: 423–447.

    PubMed  Google Scholar 

  • Dobzhansky, Th., B. Spassky & T. Tidwell, 1963. Genetics of natural populations. XXXIV. Adaptive norm, genetic load, and genetic elite inDrosophila pseudoobscura. Genetics 48: 1467–1485.

    PubMed  Google Scholar 

  • Edwards, M. D., C. W. Stuber & J. F. Wendel, 1987. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116: 113–125.

    PubMed  Google Scholar 

  • Finnegan, D. J. & D. H. Fawcett, 1986. Transposable elements inDrosophila melanogaster, pp. 1–62 in Oxford Surveys on Eukaryotic Genes, Vol. 3, edited by N. Maclean. Oxford University Press. New York.

    Google Scholar 

  • Games, P. A., 1970. Contemporary perspectives on the measurement of human abilities in Research in Psychology: Readings for the Introductory Course, edited by B. L. Kintz & J. L. Brunning. Scott-Foresman, New York.

    Google Scholar 

  • Ganetzky, B. & J. R. Flanagan, 1978. On the relationship between senescence and age-related changes in two wild-type strains ofDrosophila melanogaster. Exp. Gerontol. 13: 189–196.

    PubMed  Google Scholar 

  • Gelman, R., A. Watson, R. Bronson & E. Yunis, 1988. Murine chromosomal regions correlated with longevity. Genetics 118: 693–704.

    PubMed  Google Scholar 

  • Gowen, J. W. & L. E. Johnson, 1946. On the mechanism of heterosis. I. Metabolic capacity of different races ofDrosophila melanogaster for egg production. Amer. Nat. 80: 149–179.

    Google Scholar 

  • Graves, J. L., L. S. Luckinbill & A. Nichols, 1988. Flight duration and wing beat frequency in long-and short-livedDrosophila melanogaster. Insect Physiol. 34: 1021–1026.

    Google Scholar 

  • Grigliatti, T., 1986. Mutagenesis, pp. 39–58 inDrosophila: a Practical Approach, edited by D. B. Roberts, IRL Press, Oxford-Washington DC.

    Google Scholar 

  • Haldane, J. B. S. & C. H. Waddington, 1931. Inbreeding and linkage. Genetics 16: 357–374.

    Google Scholar 

  • Hamada, H., M. G. Petrino & T. Takunaga, 1982. A novel repeated element with z-DNA-forming potential is widely found in evolutionary diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79: 6465–6469.

    PubMed  Google Scholar 

  • Hilbert, P., K. Lindpaintner, J. S. Beckmann, T. Serikawa, F. Soubrier, C. Dubay, P. Cartwright, B. de Bouyon, C. Julier, S. Takahasi, M. Vincent, D. Ganten, M. Georges & G. M. Lathrop, 1991. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353: 521–529.

    PubMed  Google Scholar 

  • Hutchinson, E. W. & M. R. Rose, 1991. Quantitative genetics of postponed aging inDrosophila melanogaster. I. Analysis of outbred populations. Genetics 127: 719–727.

    PubMed  Google Scholar 

  • Hutchinson, E. W., A. J. Shaw & M. R. Rose, 1991. Quantitative genetics of postponed aging inDrosophila melanogaster. II. Analysis of selected lines. Genetics 127: 729–737.

    PubMed  Google Scholar 

  • Inouye, S., S. Yuki & K. Saigo, 1984. Sequence-specific insertion of theDrosophila transposable genetic element 17.6. Nature 310: 332–333.

    PubMed  Google Scholar 

  • Jacob, H. J., K. Lindpaintner, S. E. Lincoln, K. Kusumi, R. K. Bunker, Y-P. Mao, D. Ganten, V. J. Dzau & E. S. Lander, 1991. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67: 213–224.

    PubMed  Google Scholar 

  • Lander, E. S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    PubMed  Google Scholar 

  • Lewin, B., 1990. Genes IV. Oxford Press, New York.

    Google Scholar 

  • Love, J. M., A. M. Knight, M. A. McAleer & J. A. Todd, 1990. Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellites. Nucleic Acids Res. 18: 4123–4130.

    PubMed  Google Scholar 

  • Lowenhapt, K., A. Rich & M. L. Pardue, 1989. Nonrandom distribution of long mono-and dinucleotide repeats inDrosophila chromosomes: Correlations with dosage compensation, heterochromatin, and recombination. Mol. Cell. Biol. 9: 1173–1182.

    PubMed  Google Scholar 

  • Luckinbill, L. S., R. Arking, M. J. Clare, W. C. Cirocco & S. A. Buck, 1984. Selection for delayed senescence inDrosophila melanogaster. Evolution 38: 996–1003.

    Google Scholar 

  • Luckinbill, L. S., J. L. Graves, A. Tomkiw & O. Sowirka, 1988. A qualitative analysis of some life-history correlates of longevity inDrosophila melanogaster. Evol. Ecol. 2: 85–94.

    Google Scholar 

  • Mackay, T. F. C., R. F. Lyman & M. S. Jackson, 1992. Effects ofP element insertions on quantitative traits inDrosophila melanogaster. Genetics 130: 315–332.

    PubMed  Google Scholar 

  • Mackay, T. F. C., R. F. Lyman, M. S. Jackson, C. Terzian & W. G. Hill, 1992. Polygenic mutation inDrosophila melanogaster: estimates from divergence among inbred strains. Evolution 46: 300–316.

    Google Scholar 

  • McClearn, G. E., R. Plomin, G. Gora-Maslak & J. Crabbe, 1991. The gene chase in behavioral science. Psychological Science 2: 222–229.

    Google Scholar 

  • Merriam, J., M. Ashburner, D. L. Hartl & F. C. Kafatos, 1991. Toward cloning and mapping the genome ofDrosophila. Science 254: 221–225.

    PubMed  Google Scholar 

  • Meyers, J. L., 1980. Fundamentals of Experimental Design, 3rd ed. Allyn Bacon, New York.

    Google Scholar 

  • Montgomery, E., B. Charlesworth & C. H. Langley, 1987. A test for the role of natural selection in the stabilization of transposable element copy number in a population ofDrosophila melanogaster. Genet. Res. 49: 31–41.

    PubMed  Google Scholar 

  • Mukai, T. & O. Yamaguchi, 1974. The genetic structure of natural populations ofDrosophila melanogaster. XI. Genetic variability of local populations. Genetics 76: 339–366.

    PubMed  Google Scholar 

  • Neumann, P. E., 1992. Inference in linkage analysis of multifactorial traits using recombinant inbred strains of mice. Beh. Gen. 22: 665–676.

    Google Scholar 

  • Pardue, M. L., K. Lowenhaupt, A. Rich & A. Nordheim, 1987. dC-dAn dG-dTn sequences have evolutionary conserved chromosomal locations inDrosophila with implications for roles in chromosome structure and function. EMBO J. 6: 1781–1789.

    PubMed  Google Scholar 

  • Paterson, A. H., S. Damon, J. D. Hewitt, D. Zamir, H. D. Rabinowitch, S. E. Lincoln, E. S. Lander & S. D. Tanksley, 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127: 181–197.

    PubMed  Google Scholar 

  • Paterson, A. H., E. S. Lander, J. D. Hewitt, S. Peterson, S. E. Lincoln & S. D. Tanksley, 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 355: 721–726.

    Google Scholar 

  • Plomin, R., G. E. McClearn, G. Gora-Maslak & J. M. Neiderhiser, 1991. Use of recombinant inbred strains to detect quantitative trait loci associated with behavior. Behavior Genetics 21: 99–116.

    PubMed  Google Scholar 

  • Plomin, R., J. C. DeFries & G. E. McClearn, 1990. Behavioral Genetics: A Primer. W. H. Freeman, New York.

    Google Scholar 

  • Rose, M. R., 1984a. Genetic covariation inDrosophila life history: Untangling the data. Am. Nat. 123: 565–569.

    Google Scholar 

  • Rose, M. R., 1984b. Laboratory evolution of postponed senescence inDrosophila melanogaster. Evolution 38: 1004–1010.

    Google Scholar 

  • Rose, M. R., 1991. Evolutionary Biology of Aging. Oxford University Press, New York.

    Google Scholar 

  • Rose, M. R. & B. Charlesworth, 1981. Genetics of life history inDrosophila melanogaster. I. Sib analysis of adult females. Genetics 97: 173–186.

    PubMed  Google Scholar 

  • Rose, M. R., F. J. Ayala, G. S. Spicer, R. H. Tyler & J. E. Fleming, 1991. Genetics of postponed aging inDrosophila melanogaster. AGE 14: 136 (abstract).

    Google Scholar 

  • Sax, K. 1923. The association of size differences with seed-coat pattern and pigmentation inPhaseolus vulgaris. Genetics 8: 552–560.

    Google Scholar 

  • Serikawa, T., T. Kuramoto, P. Hilbert, M. Mori, J. Yamada, C. J. Dubay, K. Lindpainter, D. Ganten, J-L. Guenet, G. M. Lathrop & J. S. Beckmann, 1992. Rat gene mapping using PCR-analyzed microsatellites. Genetics 131: 701–721.

    PubMed  Google Scholar 

  • Service, P. M., 1987. Physiological mechanisms of increased stress resistance inDrosophila melanogaster selected for postponed senescence. Physiol. Zool. 60: 321–326.

    Google Scholar 

  • Service, P. M., E. W. Hutchinson, M. D. MacKinley & M. R. Rose, 1985. Resistance to environmental stress inDrosophila melanogaster selected for postponed senescence. Physiol. Zool. 58: 380–389.

    Google Scholar 

  • Stallings, R. L., A. F. Ford, D. Nelson, D. C. Torney, C. E. Hildebrand & R. K. Moyzis, 1991. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics 10: 807–815.

    PubMed  Google Scholar 

  • Stephens, J. C., M. L. Cavanaugh, M. I. Gradie, M. L. Mador & K. K. Kidd, 1990. Mapping the human genome: current status. Science 250: 237–244.

    PubMed  Google Scholar 

  • Sturtevant, A. H., 1913. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 14: 43–59.

    Google Scholar 

  • Tanksley, S. D., H. Medina-Filho & C. M. Rick, 1982. Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity 49: 11–25.

    Google Scholar 

  • Tanksley, S. D., N. D. Young, A. H. Paterson & M. W. Bonierbale, 1989. RFLP mapping in plant breeding: new tools for an old science. Bio Technology 7: 257–264.

    Google Scholar 

  • Tautz, D., 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17: 6463–6471.

    PubMed  Google Scholar 

  • Tautz, D. & M. Renz, 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nuc. Acids Res. 12: 4127–4138.

    Google Scholar 

  • Taylor, B. A., 1976a. Development of recombinant inbred lines of mice. Behavior Genetics 6: 118 (abstract).

    Google Scholar 

  • Taylor, B. A., 1976b. Genetic analysis of susceptibility to isoniazid-induced seizures in mice. Genetics 83: 373–377.

    Google Scholar 

  • Taylor, B. A., 1989. Recombinant inbred strains, pp. 773–789 in Genetic Variants and Strains of the Laboratory Mouse, 2nd ed., edited by M. F. Lyon and A. G. Searle. Oxford University Press, New York.

    Google Scholar 

  • Thoday, J. M., 1961. Location of polygenes. Nature 191: 368–370.

    Google Scholar 

  • Thompson, J. N., Jr. & J. M. Thoday, editors, 1979. Quantitative Genetic Variation. Academic Press, New York.

    Google Scholar 

  • Todd, J. A., T. J. Aitman, R. J. Cornall, S. Ghosh, J. R. S. Hall, C. M. Hearne, A. M. Knight, J. M. Love, M. A. McAleer, J. Prins, N. Rodrigues, M. Lathrop, A. Pressey, N. H. Delarato, L. B. Peterson & L. S. Wicker, 1991. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351: 542–547.

    PubMed  Google Scholar 

  • Traina-Dorge, V. L., J. K. Carr, J. E. Bailey-Wilson, R. C. Elston, B. A. Taylor & J. C. Cohen, 1985. Cellular genes in the mouse regulate in trans the expression of endogenous mouse mammary tumor viruses. Genetics 11: 597–615.

    Google Scholar 

  • Vallejos, C. E., N. S. Sakiyama & C. D. Chase, 1992. A molecular marker-based linkage map ofPhaseolus vulgaris L. Genetics 131: 733–740.

    PubMed  Google Scholar 

  • Wattiaux, J. M., 1968. Cumulative parental effects inDrosophila subobscura. Evolution 22: 406–421.

    Google Scholar 

  • Weber, J. L., 1990. Human DNA polymorphims based on length variations in simple-sequence tandem repeats. Genome Analysis 1: 159–181.

    Google Scholar 

  • Weber, J. L. & P. E. May, 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. American Journal of Human Genetics 44: 388–396.

    PubMed  Google Scholar 

  • White, R., J-M. Lalouel, M. Lathrop, M. Leppert, Y. Nakamura & P. O'Connell, 1990. Human genetic linkage maps. pp. 5.134–5.157 in Genetic Maps: Locus Maps of Complex Genomes. 5th ed. Book 5: Human Maps, edited by J. O'Brien. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Williams, B. D., B. Schrank, C. Huynh, R. Shownkeen & R. H. Waterston, 1992. A genetic mapping system inCaenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131: 609–624.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixon, L.K. Use of recombinant inbred strains to map genes of aging. Genetica 91, 151–165 (1993). https://doi.org/10.1007/BF01435995

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01435995

Key words

Navigation