Skip to main content
Log in

Population density effects on longevity

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Population density, or the number of adults in an environment relative to the limiting resources, may have important long and short term consequences for the longevity of organisms. In this paper we summarize the way in which crowding may have an immediate impact on longevity, either through the phenomenon known as dietary restriction or through alterations in the quality of the environment brought on by the presence of large numbers of individuals. We also consider the possible long term consequences of population density on longevity by the process of natural selection. There has been much theoretical speculation about the possible impact of population density on the evolution of longevity but little experimental evidence has been gathered to test these ideas. We discuss some of the theory and empirical evidence that exists and show that population density is an important factor in determining both the immediate chances of survival and the course of natural selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrewartha, H. G. & L. C. Birch, 1954. Distribution and Abundance of Animals. University of Chicago Press, Chicago.

    Google Scholar 

  • Austad, S. N., 1989. Life extension by dietary restriction in the bowl and doily spider,Frontinella pyramirela. Exp. Gerontol. 24: 83–92.

    PubMed  Google Scholar 

  • Beverton, R. J. H., 1962. Long-term dynamics of certain North Sea fish populations, pp. 242–259 in The Exploitation of Natural Animal Populations, edited by E. D. LeCren and M. W. Holgate, Wiley, N.Y.

    Google Scholar 

  • Carey, J. R., P. Liedo, D. Orozco & J. W. Vaupel, 1992. Slowing of mortality rates at older ages in large medfly cohorts. Science 258: 457–461.

    PubMed  Google Scholar 

  • Charlesworth, B., 1980. Evolution in age-structured populations. Cambridge University Press.

  • Chiang, H. C. & A. C. Hodson, 1954. An analytical study of population growth inDrosophila melanogaster. Ecol. Monog. 20: 173–206.

    Google Scholar 

  • Chippindale, A. K., A. M. LeRoi, S. B. Kim & M. R. Rose, 1993. Phenotypic plasticity and selection inDrosophila lifehistory evolution. I. Nutrition and the cost of reproduction. J. Evol. Biol. 6: 171–193.

    Google Scholar 

  • Cole, L. C., 1954. The population consequences of life history phenomena. Q. Rev. Biol. 29: 103–137.

    PubMed  Google Scholar 

  • Darwin, C., 1859. On the Origin of Species. Reprinted by Harvard University Press.

  • David, J., J. Van Herrewege & P. Fouillet, 1971. Quantitative underfeeding ofDrosophila: effects on adult longevity and fecundity. Exp. Gerontol. 6: 249–257.

    PubMed  Google Scholar 

  • Davis, M. B., 1945. The effect of population density on longevity inTrogoderma versicolor creutz (=T. inclusa Lec.). Ecology 26: 353–362.

    Google Scholar 

  • Edney, E. B. & R. W. Gill, 1968. Evolution of senescence and specific longevity. Nature 220: 281–282.

    PubMed  Google Scholar 

  • Eisenburg, J. F., 1981. The Mammalian Radiations. The University of Chicago Press, Chicago.

    Google Scholar 

  • Eisenburg, R., 1966. The regulation of density in a natural population of the pond snailLymnaea elodes. Ecology 47: 889.

    Google Scholar 

  • Ernsting, G. & J. A. Issaks, 1991. Accelerated aging: a cost of reproduction in the carabid beetleNotiophilus biguttatus F. Funct. Ecol. 5: 299–303.

    Google Scholar 

  • Flanagan, J. R., 1980. Detecting early-life components in the determination of the age of death. Mech. Aging Develop. 13: 41–62.

    Google Scholar 

  • Frank, P. W., C. D. Bell & R. W. Kelly, 1957. Vital statistics of laboratory cultures ofDaphnia pulex DeGree as related to density. Physiol. Zool. 4: 287–305.

    Google Scholar 

  • Gibb, J. A., 1960. Populations of tits and goldcrests and their food supply in pine plantations. Ibis 102: 163–208.

    Google Scholar 

  • Gordon, R. M. & R. K. Stewart, 1988. Demographic characteristics of the stored product mothCadra cautella. J. Anim. Ecol. 57: 627–644.

    Google Scholar 

  • Graves, J. L. & M. R. Rose, 1990. Flight duration inDrosophila melanogaster selected for postponed senescence. Chapter 5. in Genetic Effects on Aging II., Telford Press, Caldwell, NJ.

    Google Scholar 

  • Graves, J. L., E. C. Toolson, C. Jeong, L. N. Vu & M. R. Rose, 1992. Desiccation, flight, glycogen, and postponed senescence inDrosophila melanogaster. Physiol. Zool. 65: 268–286.

    Google Scholar 

  • Hamilton, W. D., 1966. The moulding of senescence by natural selection. J. Theor. Biol. 12: 12–45.

    PubMed  Google Scholar 

  • Harrison, D. E. & J. R. Archer, 1988. Natural selection for extended longevity from food restriction. Growth Dev. Aging 52: 207–211.

    PubMed  Google Scholar 

  • hassell, M. P. & R. M. May, 1989. The population biology of host-parasite and host-parasitoid associations. Chapter 22, in Perspectives in Ecological Theory, edited by J. Roughgarden, R. M. May and S. A. Levin. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Hoffman, R. S., 1958. The role of reproduction and mortality in population fluctuations of voles (Microtus). Ecol. Monog. 28: 79–109

    Google Scholar 

  • Holehan, A. M. & B. J. Merry, 1985a. Modification of the oestrous cycle hormonal profile by dietary restriction. Mech Aging and Dev. 32: 63–76.

    Google Scholar 

  • Holehan, A. M. & B. J. Merry, 1985b. The control of puberty in the dietary restricted female rat. Mech Aging and Dev. 32: 179–191.

    Google Scholar 

  • Holchan, A. M. & B. J. Merry, 1986. The experimental manipulation of aging by diet. Biol. Rev. Camb. Phil. Soc. 61: 329–368.

    Google Scholar 

  • Holiday, R., 1989. Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bio Essays 10: 125–127.

    Google Scholar 

  • Ingram, D. K., R. Weindruch, E. W. Spangler, J. R. Freeman & R. L. Walford, 1987. Dietary restriction benefits learning and motor performance of aged mice. J. Gerontol. 42: 78–81.

    PubMed  Google Scholar 

  • Luckinbill, L. S. & M. J. Clare, 1985. Selection for life span inDrosophila melanogaster. Heredity 55: 9–18.

    PubMed  Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The theory of island biogeography. Princeton University Press.

  • Malthus, T., 1798. An Essay on the Principle of Population. Reprinted by MacMillan, New York.

    Google Scholar 

  • McKay, C. M., L. A. Maynard, G. Sperling & L. L. Barnes, 1939. Retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories. J. Nutr. 18: 1–13.

    Google Scholar 

  • Medawar, P. B., 1952. An unsolved problem in biology. H. K. Lewis, London.

    Google Scholar 

  • Miller, R. S. & J. L. Thomas, 1958. The effects of larval crowding and body size on the longevity of adultDrosophila melanogaster. Ecology 39: 118–125.

    Google Scholar 

  • Mitchell, B., 1973. The reproductive performance of wild Scottish red deer,Cervus elaphus. J. Repro. Fert. 19: 271–285.

    Google Scholar 

  • Morris, J. G., 1991. Nutrition, in Environmental and Metabolic Animal Physiology. Wiley-Liss, New York.

    Google Scholar 

  • Mueller, L. D., 1987. Evolution of accelerated senescence in laboratory populations ofDrosophila. Proc. Natl. Acad. Sci. USA. 84: 1974–1977.

    PubMed  Google Scholar 

  • Mueller, L. D., 1988. Density-dependent population growth and natural selection in food limited environments: theDrosophila model. Am. Nat. 132: 786–809.

    Google Scholar 

  • Mueller, L. D., 1991. Ecological determinants of life-history evolution. Phil. Trans. R. Soc. Lond. B 332: 25–30.

    Google Scholar 

  • Mueller, L. D. & F. J. Ayala, 1981a. Trade-off between r-selection and K-selection inDrosophila populations. Proc. Natl. Acad. Sci. U.S.A. 78: 1303–1305.

    Google Scholar 

  • Mueller, L. D. & F. J. Ayala, 1981b. Fitness and density dependent population growth inDrosophila melanogaster. Genetics 97: 667–677.

    PubMed  Google Scholar 

  • Mueller, L. D., J. L. Graves & M. R. Rose, 1993. Interactions between density-dependent and age-specific selection inDrosophila melanogaster. Functional Ecology (in press).

  • Mueller, L. D., F. Gonzalez-Candelas & V. F. Sweet, 1991. Components of density-dependent population dynamics: models and tests withDrosophila. Amer. Nat. 137: 547–475.

    Google Scholar 

  • Nusbaum, T. J., J. L. Graves, L. D. Mueller & M. R. Rose, 1993. Letters to Science. Science 260: 1567.

    PubMed  Google Scholar 

  • Partridge, L., 1987. Is acclerated senescence a cost of reproduction? Funct. Ecol. 1: 317–320.

    Google Scholar 

  • Partridge, L. & Fowler, 1992. Direct and correlated responses to selection on age at reproduction inDrosophila melanogaster. Evolution 46: 76–92.

    Google Scholar 

  • Pearl, R. & S. L. Parker, 1922. Experimental studies on the duration of life. IV. Data on the influence of density of population on duration of life inDrosophila. Amer. Nat. 56: 312–321.

    Google Scholar 

  • Pearl, R., J. R. Miner & S. L. Parker, 1927. Experimental studies on the duration of life. XI. Density of population and life duration inDrosophila. Amer. Nat. 61: 289–318.

    Google Scholar 

  • Pena de Grimaldo, E. & M. M. J. Lavoipierre, 1960a. Efecto de la fertilazacion sobre la ovopostura de los mosquitosAedes aegypti variedad queenlandensis, con algunas observaciones sobre anomalias y viabilidad de los hevos retindos por los mosquitos esteriles fecundizados a diferentes intervalos despues de la comida de sangre. Rev. Iberica Parasitol. 20: 163–176.

    Google Scholar 

  • Pena de Grimaldo, E. & M. M. J. Lavoipierre, 1960b. Longevidad de los mosquitosAedes aegypti variedad queenlandensis fecundados y no fecundados, alimentados con sangre o privados de ella; y dejados en qyuno; o preveidos de aqua; de solucion de azucar; o de aqua y solucion de azucar. Rev. Iberica Parasitol. 20: 39–52.

    Google Scholar 

  • Phelan, J. P. & S. N. Austad, 1989. Natural selection, Dietary Restriction, and Extended longevity. Growth, Dev. and Aging.

  • Pianka, E., 1972.r- andK-selection orb andd selection? Am. Nat. 106: 581–588.

    Google Scholar 

  • Prout, T. & F. McChesney, 1985. Competition among immatures affects their adult fertility: population dynamics. Am. Nat. 126: 521–558.

    Google Scholar 

  • Robertson, J. R. & G. W. Salt, 1981. Responses in growth, mortality, and reproduction to variable food levels by the rotifer,Aspolanchia girodi. Ecology 62: 1585–1596.

    Google Scholar 

  • Rose, M. R., 1984a. Laboratory evolution of postponed senescence inDrosophila melanogaster. Evolution 38: 1004–1010.

    Google Scholar 

  • Rose, M. R., 1984b. Evolutionary route to Methusalah. New Scientist 103: 15.

    Google Scholar 

  • Rose, M. R., 1985. Life history with antagonistic pleiotropy and overlapping generations. Theor. Popul. Biol. 28: 342–358.

    Google Scholar 

  • Rose, M. R., 1991. Evolutionary Biology of Aging. Oxford University Press, New York.

    Google Scholar 

  • Rose, M. R., J. L. Graves & E. W. Hutchinson, 1990. The use of selection to probe patterns of pleiotropy in fitness characters. Chapter 2. In: Insect Life Cycles: Genetics, Evolution, and Coordination. Springer-Verlag. Berlin.

    Google Scholar 

  • Rose, M. R., L. N. Vu, S. Park & J. L. Graves, 1992. Selection on stress resistance incrases longevity inDrosophila melanogaster. Exop. Gerontol. 27: 241–250.

    Google Scholar 

  • Schoener, T., 1973. Population growth regulated by intraspecific competition for energy or time. Theor. Popul. Biol. 4: 56–84.

    PubMed  Google Scholar 

  • Service, P. M., 1987. Physiological stress mechanisms of increased stress resistance inDrosophila melanogaster, selected for postponed senescence. Physiol. Zool. 60: 321–326.

    Google Scholar 

  • Service, P. M., 1989. The effect of mating status on life span, egg laying, and starvation resistance inDrosophila melanogaster, in relation to selection for longevity. J. Insest Phys. 35: 447–452.

    Google Scholar 

  • Service, P. M., E. W. Hutchinson, M. D. MacKinley & M. R. Rose, 1985. Resistance to environmental stress inDrosophila melanogaster. selected for postponed senescence. Physiol. Zool. 58: 380–389.

    Google Scholar 

  • Service, P. M. & M. R. Rose, 1985. Genetic covariation among life-history components: The effect of novel environments. Evolution 39: 943–945.

    Google Scholar 

  • Slob, A. K., S. J. M. Vreeburg & J. J. van der Werff ten Bosch, 1979. Body growth, puberty and under nutrition in the male guinea pig. Br. J. Nutr. 41: 231–237.

    PubMed  Google Scholar 

  • Slobodkin, L. B., 1954. Population dynamics inDaphnia obscura Kurz. Ecol. Monog. 24: 69–88.

    Google Scholar 

  • Tanner, J. T., 1966. Effects of population density on growth rates of animal populations. Ecology 45: 733–745.

    Google Scholar 

  • Wigglesworth, V. B., 1949. The utilization of reserve substances inDrosophila during flight. J. Exp. Biol. 26: 150–163.

    PubMed  Google Scholar 

  • Williams, G. C., 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graves, J.L., Mueller, L.D. Population density effects on longevity. Genetica 91, 99–109 (1993). https://doi.org/10.1007/BF01435991

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01435991

Keywords

Navigation