Skip to main content
Log in

Evolutionary mechanisms of senescence

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

This paper reviews theories of the evolution of senescence. The population genetic basis for the decline with age in sensitivity of fitness to changes in survival and fecundity is discussed. It is shown that this creates a presure of selection that disproportionately favors performance early in life. The extent of this bias is greater when there is a high level of extrinsic mortality; this accounts for much the diversity in life-history patterns among different taxa. The implications of quantitative genetic theory for experimental tests of alternative population genetic models of senescence are discussed. In particular, the negative genetic correlations between traits predicted by the antagonistic pleiotropy model may be obscured by positive correlations that are inevitable in a multivariate system, or by the effects of variation due to deleterious mutations. The status of the genetic evidence relevant to these theories is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, W. A., 1984. Manual of Quantitative Genetics. 4th ed. Academic Enterprises, Pullman, WA.

    Google Scholar 

  • Bell, G. & V. Koufopanou, 1986. The cost of reproduction. Oxf. Surv. Ev. Bio. 3: 83–131.

    Google Scholar 

  • Caughley, G., 1977. Analysis of Vertebrate Populations. Wiley Interscience. New York, N. Y.

    Google Scholar 

  • Charlesworth, B., 1980. Evolution in Age-Structured Populations. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Charlesworth, B., 1990a. Optimization models, quantitative genetics, and mutation, Evolution 44: 520–538.

    Google Scholar 

  • Charlesworth, B., 1990b. Natural selection and life history patterns, pp. 21–40 in Genetic Effects on Aging, edited by D. E. Harrison. Telford Press, Caldwell, N.J.

    Google Scholar 

  • Charlesworth, B. & D. Charlesworth, 1973. The measurement of fitness and mutation rate in human populations. Ann. Hum. Genet. 37: 175–187.

    PubMed  Google Scholar 

  • Charnov, E. L., 1989. Phenotypic evolution under Fisher's Fundamental Theorem of natural selection. Heredity 62: 97–106.

    PubMed  Google Scholar 

  • Cole, L. C., 1954. The population consequences of life history phenomena. Quart. Rev. Biol. 29: 103–137.

    PubMed  Google Scholar 

  • Comfort, A., 1979. The Biology of Senescence. 3rd. ed. Churchill Livingstone, London, U.K.

    Google Scholar 

  • Crow, J. F. & M. J. Simmons, 1983. The mutation load inDrosophila, pp. 1–35 in The Genetics and Biology of Drosophila, Vol. 3c., edited by H. L. Carson, M. Ashburner and J. N. Thomson, Academic Press, London, U.K.

    Google Scholar 

  • Dickerson, G. E., 1955. Genetic slippage in response to selection for multiple objectives. Cold Spring Harb. Symp. Quant. Biol. 20: 213–224.

    PubMed  Google Scholar 

  • Dingle, H. & J. P. Hegmann, 1982. Evolutionary Genetics of Life Histories. Springer-Verlag, New York, N.Y.

    Google Scholar 

  • Edney, E. B. & R. W. Gill, 1968. Evolution of senescence and specific longevity. Nature 220: 281–282.

    PubMed  Google Scholar 

  • Falconer, D. S., 1989. An Introduction to Quantitative Genetics. 3rd. ed. Longman, London, U.K.

    Google Scholar 

  • Finch, C. E., 1991. Longevity, Senescence, and the Genome. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Fisher, R. A., 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford U.K.

    Google Scholar 

  • Haldane, J. B. S., 1941. New Paths in Genetics. Allen and Unwin, London.

    Google Scholar 

  • Hamilton, W. D., 1966. The moulding of senescence by natural selection. J. Theor. Biol. 12: 12–45.

    PubMed  Google Scholar 

  • Harvey, P. H. & A. F. Read, 1988. How and why do mammalian life histories vary? pp. 213–231 in Evolution of Life Histories of Mammals: Theory and Pattern, edited by M. P. Boyce. Yale University Press, New Haven, C.T.

    Google Scholar 

  • Houle, D., 1991. Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. Evolution 45: 630–648.

    Google Scholar 

  • Houle, D., D. K. Hoffmaster, S. Assimacopoulos & B. Charlesworth, 1992. The genomic mutation rate for fitness inDrosophila. Nature 359: 58–60.

    PubMed  Google Scholar 

  • Kempthorne, O., 1957. An Introduction to Genetic Statistics. John Wiley, New York, N.Y.

    Google Scholar 

  • Kirkwood, T.B.L., 1990. The disposable soma theory of aging, pp. 9–10 in Genetic Effects on Aging, edited by D. E. Harrison. Telford Press, Caldwell, N.J.

    Google Scholar 

  • Kirkwood, T. B. L. & R. Holliday, 1979. The evolution of ageing and longevity. Proc. Roy. Soc. Lond. B. 205: 531–546.

    Google Scholar 

  • Kondrashov, A. S., 1988. Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435–440.

    PubMed  Google Scholar 

  • Kosuda, K., 1985. The aging effect on male mating activity inDrosophila melanogaster. Behav. Genet. 15: 297–303.

    PubMed  Google Scholar 

  • Lack, D. L., 1954. The Natural Regulation of Animal Numbers. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Lande, R., 1982. A quantitative genetic theory of life history evolution. Ecology 63: 607–615.

    Google Scholar 

  • Medawar, P. B., 1946. Old age and natural death. Modern Quarterly 1: 30–56.

    Google Scholar 

  • Medawar, P. B., 1952. An Unsolved Problem of Biology. H. K. Lewis, London, U.K.

    Google Scholar 

  • Orzack, S. H. & S. Tuljapurkar, 1989. Population dynamics in variable environments. Amer. Nat. 133: 901–923.

    Google Scholar 

  • Partridge, L. & K. Fowler, 1992. Direct and correlated responses to selection on age at reproduction inDrosophila. Evolution 46: 76–91.

    Google Scholar 

  • Partridge, L. & P. H. Harvey, 1988. The ecological context of life history evolution. Science 214: 1449–1455.

    Google Scholar 

  • Pease, C. M. & J. J. Bull, 1988. A critique of methods for measuring life-history trade-offs. J. Evol. Biol. 1: 293–303.

    Google Scholar 

  • Promislow, D. E. L., 1991. Senescence in natural populations of mammals: a comparative study. Evolution 45: 1869–1887.

    Google Scholar 

  • Reznick, D., 1985. Costs of reproduction: an evaluation of the empirical evidence. Oikos 44: 257–267.

    Google Scholar 

  • Robertson, A., 1955. Selection in animals: synthesis. Cold Spring Harb. Symp. Quant. Biol. 20: 225–229.

    Google Scholar 

  • Rose, M. R., 1982. Antagonistic pleiotropy, dominance and genetic variation. Heredity 48: 63–78.

    Google Scholar 

  • Rose, M. R., 1984. Genetic covariation inDrosophila life history: untangling the data. Amer. Nat. 123: 565–569.

    Google Scholar 

  • Rose, M. R., 1985. Life history evolution with antagonistic pleiotropy and overlapping generations. Theor. Pop. Biol. 28: 342–358.

    Google Scholar 

  • Rose, M. R., 1991. The Evolutionary Biology of Aging. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Rose, M. R. & B. Charlesworth, 1980. A test of evolutionary theories of senescence. Nature 287: 141–142.

    PubMed  Google Scholar 

  • Rose, M. R. & B. Charlesworth, 1981. Genetics of life history inDrosophila melanogaster. I. Sib analysis of adult females. Genetics 97: 173–186.

    Google Scholar 

  • Service, P. M. & M. R. Rose, 1985. Genetic covariation among life history components: the effect of novel environments. Evolution 39: 943–945.

    Google Scholar 

  • Sibly, R. M. & P. Calow, 1986. Physiological Ecology of Animals: An Evolutionary Approach. Blackwell, Oxford, U.K.

    Google Scholar 

  • Stearns, S. C., 1992. The evolution of life histories. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Templeton, A. R., 1980. The evolution of life histories under pleiotropic constraints andr-selection. Theor. Pop. Biol. 18: 279–289.

    Google Scholar 

  • Williams, G. C., 1957. Pleiotropy, natural selection and the evolution of senescence. Evolution 11: 398–411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlesworth, B. Evolutionary mechanisms of senescence. Genetica 91, 11–19 (1993). https://doi.org/10.1007/BF01435984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01435984

Key words

Navigation