Skip to main content
Log in

Microscopic observation of ordered colloids in sedimentation equilibrium and the importance of the Debye-screening length. 9. Compressed crystals of giant colloidal spheres (diam. 2–66 μm)

  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Compressed crystal-like structures of very large polystyrene spheres (specific gravity=1.05, diameter=2–66 μm) are observed directly by a metallurgical microscope in sedimentation equilibrium and in deionized aquueous and 20 vol % methanol aqueous suspensions. Spheres of 2–42 μm in diameter float above the cover glass apart from each other. The center-to-center intersphere distance decreases as the initial concentration of spheres increases, from which Young's elastic moduli (G) for the crystal-like structures are estimated to be between 1 to 10 dyn/cm2, irrespective of the spheres size.G's in aqueous suspension are smaller than those in methanol aqueous mixtures. The crystal-like structures are compressed substantially by the gravitational field. These results are consistent with the significant role of the electrical double layers under the influence of purely electrostatic repulsive forces in the effective hard-sphere model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crandall RS, Williams R (1977) Science 198:293

    Google Scholar 

  2. Furusawa K, Tomotsu N (1983) J Colloid Interface Sci 93:504

    Google Scholar 

  3. Okubo T (1987) J Chem Phys 86:2394

    Google Scholar 

  4. Okubo T (1987) J Chem Phys 86:5182

    Google Scholar 

  5. Okubo T (1987) Colloid Polym Sci 265:522

    Google Scholar 

  6. Okubo T (1987) Colloid Polym Sci 265:597

    Google Scholar 

  7. Okubo T (1987) Angew Chem 99:803

    Google Scholar 

  8. Okubo T (1987) J Chem Phys 87:5528

    Google Scholar 

  9. Okubo T (1988) J Chem Phys 88:2083

    Google Scholar 

  10. Okubo T (1988) J Chem Phys 88:658

    Google Scholar 

  11. Okubo T, Aotani S (1988) Naturwissenschaften 75:145

    Google Scholar 

  12. Okubo T, Aotani S (1988) Colloid Polym Sci 266:1049

    Google Scholar 

  13. Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S (1973) J Colloid Interface Sci 44:330

    Article  Google Scholar 

  14. Luck W, Klier M, Wesslau H (1963) Ber Bunsenges Phys Chem 67:75, 84

    Google Scholar 

  15. Ottewill RH, Shaw JN (1966) Disc Faraday Soc 42:154

    Google Scholar 

  16. Hiltner PA, Krieger IM (1969) J Phys Chem 73:2386

    Google Scholar 

  17. Vanderhoff W, van de Hul HJ, Tausk RJM, Overbeek JThG (1970) In: Goldfinger G (ed) Clean Surface: Their Preparation and Characterization for Interfacial Studies. Dekker, New York

    Google Scholar 

  18. Williams R, Crandall RS (1974) Phys Lett A48:225

    Google Scholar 

  19. Schaefer DW (1978) J Chem Phys 66:3980

    Google Scholar 

  20. Mitaku S, Otsuki T, Okano K (1978) Jpn J Appl Phys 17:305, 627

    Google Scholar 

  21. Clark NA, Hurd AJ, Ackerson BJ (1979) Nature (London) 281:657

    Google Scholar 

  22. Lindsay HM, Chaikin PM (1982) J Chem Phys 76:3774

    Google Scholar 

  23. Pieranski P (1983) Contemp Phys 24:25

    Google Scholar 

  24. Tomita M, van de Ven TGM (1983) J Colloid Interface Sci 92:367

    Google Scholar 

  25. Hess W, Klein R (1983) Adv Phys 32:173

    Google Scholar 

  26. Hartl W, Versmold H (1984) J Chem Phys 81:2507

    Google Scholar 

  27. Ottewill RH (1985) Ber Bunsenges Phys Chem 89:517

    Google Scholar 

  28. Clark NA, Ackerson BJ (1980) Phys Rev Lett 44:1005

    Google Scholar 

  29. Ackerson BJ, Clark NA (1981) Phys Rev Lett 46:123

    Google Scholar 

  30. Okubo T (1987) J Colloid Interface Sci 117:165

    Google Scholar 

  31. Okubo T (1987) J Chem Phys 87:3022

    Google Scholar 

  32. Okubo T (1988) Ber Bunsenges Phys Chem 92:504

    Google Scholar 

  33. Okubo T (1987) J Chem Soc Faraday Trans 1 83:2487

    Google Scholar 

  34. Okubo T, J Chem Soc Faraday Trans, in press

  35. Mitaku S, Ohtsuki T, Kishimoto A, Okano K (1980) Biophys Chem 11:411

    Google Scholar 

  36. Mitaku S, Ohtsuki T, Okano K (1980) Jpn J Appl Phys 19:439

    Google Scholar 

  37. Okubo T (1988) Polym Bull 20:269

    Google Scholar 

  38. Verwey EJW, Overbeek JThG (1948) Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T., Aotani, S. Microscopic observation of ordered colloids in sedimentation equilibrium and the importance of the Debye-screening length. 9. Compressed crystals of giant colloidal spheres (diam. 2–66 μm). Colloid & Polymer Sci 266, 1042–1048 (1988). https://doi.org/10.1007/BF01428815

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01428815

Key words

Navigation