Skip to main content
Log in

Lower critical solution temperature (LCST) and theta temperature of aqueous solutions of nonionic surface active agents of various polyoxyethylene chain lengths

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Cloud points of aqueous solutions of homogeneous poly(oxyethylene)dodecyl ether derivatives (C12(OE)n: n=2–8) and the apparent theta temperature ap were determined from the abrupt changes in optical transmittance and the temperature dependence of the second virial coefficient obtained by light scattering measurements. It was found that the lower critical solution temperature (LCST) shifts to a lower temperature and lower concentration as the number of oxyethylene units in a molecule decreases. Because of this behavior of LCST, the modified Flory-Schultz plot of phase separation was applied to the present nonionic surfactant-water system, and its theta temperature obtained. The dependence of ap on the number of oxyethylene units suggests that the polyoxyethylene chain has different effects on the solubility of C12(OE)n in water forn less than or equal to 3 from those forn greater than or equal to 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuroiwa S, Matsuda H, Fujimatsu H (1980) Nippon Kagaku Kaishi 362

  2. Prigogine I (1957) The Molecular Theory of Solution, North-Holland, Amsterdam 115

    Google Scholar 

  3. Delmas G, Patterson D, Somcynsky T (1962) J Polym Sci 57:79

    Google Scholar 

  4. Patterson D, Delmas G (1969) Trans Faraday Soc 65:708

    Google Scholar 

  5. Patterson D, Delmas G (1970) Discuss Faraday Soc 49:98

    Google Scholar 

  6. Biros J, Zeman L, Patterson D (1971) Macromolecules 4:30

    Google Scholar 

  7. Flory PJ, Orwall RA, Vrij A (1964) J Am Chem Soc 86:3507–3515

    Google Scholar 

  8. Flory PJ (1965) J Am Chem Soc 87:1833

    Google Scholar 

  9. Fujimatsu H, Takagi K, Matsuda H, Kuroiwa S (1983) J Colloid Interface Sci 94:237

    Google Scholar 

  10. Kjellander R (1982) J Chem Soc Faraday II 78:2025

    Google Scholar 

  11. Goldfalb J, Sepulveda L (1969) J Colloid Interface Sci 31:454

    Google Scholar 

  12. Balmbla RR, Clunie JS, Corkill JM, Goodman JF (1962) Trans Faraday Soc 58:1661

    Google Scholar 

  13. Corti M, Degiorgio V (1981) J Phys Chem 85:1442

    Google Scholar 

  14. Mitchell DJ, Tiddy GJT, Waring L, Bostock T, McDonald MP (1983) J Chem Soc Faraday I 79:975

    Google Scholar 

  15. Shults AR, Flory PJ (1952) J Am Chem Soc 74:4760

    Google Scholar 

  16. Delmas G, Patterson D (1966) Polymer 7:513

    Google Scholar 

  17. Flory PJ (1951) J Am Chem Soc 73:1909

    Google Scholar 

  18. Liddel AH, Swinton FL (1970) Dis Faraday Soc 49:115

    Google Scholar 

  19. Shults GV, Baumann H (1963) Macromol Chem 60:120

    Google Scholar 

  20. Saeki S, Kuwahara N, Konno S, Kaneko M (1973) Macromolecules 6:246, 589

    Google Scholar 

  21. Kuwahara N, Saeki S, Konno S, Kaneko M (1974) Polymer 15:66

    Google Scholar 

  22. Kuwahara N, Saeki S, Chiba T, Kaneko M (1974) Polymer 15:777

    Google Scholar 

  23. Flory PJ (1953) Principles of Polymer Chemistry, Cornell Univ Press

  24. Sakurada I, Nakajima A, Takida H (1955) Kobunshi Kagaku 12:15

    Google Scholar 

  25. Krause FP, Willy L (1965) J Phys Chem 69:317

    Google Scholar 

  26. Corti M, Degiorgio V, Zulauf M (1982) Phys Rev Lett 48:1617

    Google Scholar 

  27. Corti M, Minero C, Degiorgio V (1984) J Phys Chem 88:309

    Google Scholar 

  28. Corti M, Degiorgio V, Hayter JB, Zulauf M (1984) Chem Phys Lett 109:579

    Google Scholar 

  29. Degiorgio V, Piazza R, Corti M, Minero C (1985) J Chem Phys 82:1025

    Google Scholar 

  30. Zulauf M, Weckstrom K, Hayter JB, Degiorgio V, Corti M (1985) 89:3411

  31. Staples EJ, Tiddy GJT (1978) J Chem Soc Faraday Trans I 74:2530

    Google Scholar 

  32. Triolo R, Magid LJ, Johnson JS, Child HR (1982) J Phys Chem 86:3689

    Google Scholar 

  33. Magid LJ, Triolo R, Johnson JS (1984) J Phys Chem 88:5730

    Google Scholar 

  34. Hayter JB, Zulauf M (1982) Colloid Polym Sci 260:1023

    Google Scholar 

  35. Zulauf M, Rosenbusch JP (1983) J Phys Chem 87:856

    Google Scholar 

  36. Di Meglio JM, Paz L, Dvolaitzky M, Taupin C (1984) J Phys Chem 88:6036

    Google Scholar 

  37. Kato T, Scimiya T (1986) J Phys Chem 90:3159

    Google Scholar 

  38. Blankstein D, Thurston GM, Benedek GB (1985) Phys Rev Lett 54:955

    PubMed  Google Scholar 

  39. Thurston GM, Blankstein D, Fisch M, Benedek GB (1986) J Chem Phys 84:4558

    Google Scholar 

  40. Goldstein R (1986) J Chem Phys 84:3367

    Google Scholar 

  41. Matsuura H, Fukuhara K (1986) J Phys Chem 90:3057

    Google Scholar 

  42. Matsuura H, Fukuhara K (1985) J Mol Struct 126:251

    Google Scholar 

  43. Saeki S, Kuwahara N, Nakata M, Kaneko M (1976) Polymer 17:685

    Google Scholar 

  44. Funasaki N, Hada S, Neya S (1986) J Phys Chem 90:5469

    Google Scholar 

  45. Kaneshina S, Yoshimoto M, Kobatashi H, Nishikido N, Sugihara G, Tanaka M (1980) J Colloid Interface Sci 73:124

    Google Scholar 

  46. Konno S, Saeki S, Nakata M, Kuwahara N (1975) Macromolecules 8:798

    Google Scholar 

  47. Saeki S, Konno S, Kuwahara N, Nakata M, Kaneko M (1974) Macromolecules 7:521

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimatsu, H., Ogasawara, S. & Kuroiwa, S. Lower critical solution temperature (LCST) and theta temperature of aqueous solutions of nonionic surface active agents of various polyoxyethylene chain lengths. Colloid & Polymer Sci 266, 594–600 (1988). https://doi.org/10.1007/BF01411498

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01411498

Key words

Navigation