Skip to main content
Log in

Fehlerabschätzungen für Gauß-Quadraturformeln

Error estimates for gauss quadrature formulae

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We consider Gauss quadrature formulaeQ n ,n∈ℤ, approximating the integral\(I(f): = \int\limits_{ - 1}^1 {w(x)f(x)dx} \),w an even weight function. Let\(f(z) = \sum\limits_{k = 0}^\infty {\alpha _k^f z^k } \) be analytic inK r :={z∈ℂ:|z|<r},r>1, and\(|f|_r : = \mathop {sup}\limits_{k \geqq n} \{ |\alpha _{2k}^f |r^{2k} \}< \infty \). The error functionalR n :=I-Q n is continuous with respect to |·|r and the relation\(\parallel R_n \parallel = \sum\limits_{k = 0}^\infty {[R_n (q_{2k} )/r^{2k} ]} \), q2k (x):=x 2k holds.

In this paper estimates for ∥R n ∥ are given. To this end we first derive two new representations of ∥R n ∥ which are essential for our further investigations. The ∥R n ∥=r 2 R n (Φ), with Φ(x):=1/(r 2-x 2), is estimated in various ways by using the best uniform approximation of Φ in P2n-1, and also the expansion of Φ with respect to Chebyshe polynomials of the first and second kind. Forw(x)=(1-x 2)α, α=±1/2, ∥R n ∥ is calculated. The asymptotic behaviour, forr→1+, of ∥R n ∥ and of the derived error bounds is also discussed. Finally, we compare different error bounds and give numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Akrivis, G.: Fehlerabschätzungen bei der numerischen Integration in einer und mehreren Dimensionen. Dissertation, Universität München, 1983.

  2. Braß, H.: Quadraturverfahen. Göttingen, Zürich: Vandenhoeck und Ruprecht 1977

    Google Scholar 

  3. Braß, H.: Monotonie bei den Quandraturverfahren von Gauß und Newton-Cotes. Numer. Math.30, 349–354 (1978)

    Google Scholar 

  4. Chawla, M.M.: On Davis's method for the estimation of errors of Gauss-Chebyshev quadratures. SIAM J. Numer. Anal.6, 108–117 (1969)

    Google Scholar 

  5. Copson, E.T.: An Introduction to the theory of functions of a complex variable. Oxford: Clarendon Press 1935

    Google Scholar 

  6. Davis, P.J., Rabinowitz, P.: Methods of numerical integration. New York, San Francisco, London: Academic Press 1975

    Google Scholar 

  7. Gröbner, W., Hofreiter, N. (Hrsg.): Integraltafel. II. Teil, 3., verb. Aufl, Wien: Springer 1961

    Google Scholar 

  8. Hämmerlin, G.: Über ableitungsfreies Schranken für Quandraturfehler. II. Ergänzungen und Möglichkeiten zur Verbesserung. Numer. Math.7, 232–237 (1965)

    Google Scholar 

  9. Hämmerlin, G.: Fehlerabschätzungen bei numerischer Integration nach Gauß. In: Methoden und Verfahren der mathematischen Physik, Bd. 6 (B. Brosowski, E. Martensen, Hrsg.), S. 153–163. Mannheim, Wien, Zürich: Bibliographisches Institut 1972

    Google Scholar 

  10. Rivlin, T.J.: Polynomials of the best uniform approximation to certain rational functions. Numer. Math.4, 345–349 (1962)

    Google Scholar 

  11. Rivlin, T.J.: The Chebyshev polynomials. New York, London, Sydney, Toronto: John Wiley and Sons 1974

    Google Scholar 

  12. Szegö, G.: Orthogonal polynomials. New York: Amer. Math. Soc. 1939

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akrivis, G. Fehlerabschätzungen für Gauß-Quadraturformeln. Numer. Math. 44, 261–278 (1984). https://doi.org/10.1007/BF01410110

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01410110

Subject Classifications

Navigation