Skip to main content
Log in

Cerebral blood flow and cerebral metabolism in acute increase of intracranial pressure

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

The effects of a stepwise acute increase of intracranial cerebrospinal fluid pressure on cerebral blood flow, cerebral arteriovenous differences of oxygen and glucose and on the output of lactate were studied in anaesthetized normoventilated normoxic dogs. Intracranial hypertension was produced by infusing mock-CSF into the cisterna magna. Mean arterial blood pressure was kept at a constant level throughout the experimental investigations. At a cerebral perfusion pressure of about 70 mm Hg, CBF and the cerebral metabolic rates of oxygen and glucose were not significantly changed. However, further reduction in the cerebral perfusion pressure to below 40 mm Hg, was accompanied by a statistically significant decrease of CBF and a deterioration of the oxidative metabolism. Glucose uptake was particularly disturbed by raised intracranial pressure. Increased cerebral output of lactate and low CMRO2 indicated raised glycolysis. But (V-A)lactate was also increased at a relatively moderate reduction of the cerebral perfusion pressure, when autoregulation was still effective and CMRO2 unchanged. The data are discussed in context with similar experimental results recently published by other investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, C. S., P. J. Cohen, H. Wollman, T. C. Smith, M. Reivich, and R. K. Van der Molen, Cerebral carbohydrate metabolism during hypocarbia in man. Studies during nitrous oxide anaesthesia. Anesthesiology26 (1965), 624–632.

    PubMed  Google Scholar 

  • Bernsmeier, A., und K. Siemons, Die Messung der Hirndurchblutung mit der Stickoxydulmethode. Pflügers Arch. ges. Physiol.258 (1953), 149–162.

    Google Scholar 

  • — —, Hirndruck und Hirndurchblutung. Klin. Wschr.31 (1953), 166–169.

    PubMed  Google Scholar 

  • Brierley, J. B., and J. E. Excell, The effects of profound systemic hypotension upon the brain of M. Rhesus: Physiological and pathological observations. Brain89 (1966), 269–298.

    PubMed  Google Scholar 

  • Brock, M., A. A. Hadjidimos, K. Schürmann, M. Ellger, and F. Fischer, Regional cerebral blood flow in cases of brain tumor. Cerebral Blood Flow, p. 169–171, ed. by M. Brock, C. Fieschi, D. M. Ingvar, N. A. Lassen, K. Schürmann. Berlin-Heidelberg-New York: Springer. 1969.

    Google Scholar 

  • —, J. Beck, E. Markakis, W. Pöll, and H. Dietz, Intracranial pressure gradients, local tissue perfusion pressure and regional cerebral blood flow. Proceedings of the 5th International Symposium on cerebral blood flow regulation, acid base and energy metabolism in acute brain injuries. Rome-Siena 1971, p. 456–460. Ed. C. Fieschi. Basel: S. Karger. 1972.

    Google Scholar 

  • Courtice, F. C., The effect of raised intracranial pressure on the cerebral blood flow. J. Neurol. Neurosurg. Psychiat.3 (1940), 293–305.

    Google Scholar 

  • Cronquist, S., and N. Lundberg, Regional cerebral blood flow in intracranial tumours with special regard to cases with intracranial hypertension. Scand. J. Lab. Clin. Invest. Suppl.102 (1968), XV: A.

    Google Scholar 

  • Cushing, H., Some experimental and clinical observations concerning state of increased intracranial tension. Amer. J. med. Sci.124 (1902), 375–400.

    Google Scholar 

  • Dickinson, C. J., and J. W. McCubbin, Pressure effect of increased cerebrospinal fluid pressure and vertebral artery occlusion with and without anaesthesia. Circulat. Res.121 (1963), 190–202.

    Google Scholar 

  • Ekstroem-Jodal, B., E. Häggendal, N. J. Nilsson, and B. Norbäck, Changes of the transmural pressure-the probable stimulus to cerebral blood flow autoregulation. Cerebral Blood Plow, p. 89–93, ed. by M. Brock, C. Fieschi, D. H. Ingvar, N. A. Lassen, K. Schürmann. Berlin-Heidel-berg-New York: Springer. 1969.

    Google Scholar 

  • Espagno, J., and Y. Lazorthes, Cerebral blood flow in brain tumors. Scand. J. Lab. Clin. Invest. Suppl.102 (1968), XV: C.

    Google Scholar 

  • Fieschi, C., A. Agnoli, L. Bozzao, N. Battistini, and M. Prencipe, Discrepancies between autoregulation and CO2 reactivity of cerebral vessels. Cerebral Blood Flow, p. 120–122, ed. by M. Brock, C. Fieschi, D. H. Ingvar, N. A. Lassen, K. Schürmann. Berlin-Heidelberg-New York: Springer. 1969.

    Google Scholar 

  • Fog, M., Influence of intracranial hypertension upon the cerebral circulation. Acta Psychiat. Neurol. Scand.8 (1933), 191–198.

    Google Scholar 

  • Gänshirt, H., und W. Tönnis, Durchblutung und Sauerstoffverbrauch des Hirns bei intracraniellen Tumoren. Dtsch. Z. Nervenheilk.174 (1956), 305–330.

    Google Scholar 

  • Gottstein, U., W. Berghoff, K. Held, H. Gabriel, M. Textor, and U. Zahn, Cerebral metabolism during hyperventilation and inhalation of CO2. Brain and Blood Flow. Proceedings of the IV. International Symposium on the regulation of cerebral blood flow. London, Sept. 1970, p. 170–173, ed. by R. W. Russell. London: Pitman Medical and Scientific Publishing Co Ltd. 1971.

    Google Scholar 

  • Greenfield, J. C., and G. T. Tindall, Effect of acute increase in intracranial pressure on blood flow in the internal carotid artery of man. J. Clin. Invest.44 (1965), 1343–1351.

    PubMed  Google Scholar 

  • Häggendal, E., and I. Winsö, Influence of hypoxia on the response of CBF to hypocapnia. Cerebral Blood Flow, p. 70–74, ed. by M. Brock, C. Fieschi, D. H. Ingvar, N. A. Lassen, K. Schürmann. Berlin-Heidelberg-New York: Springer. 1969.

    Google Scholar 

  • —, J. Löfgren, N. J. Nilsson, and N. N. Zwetnow, Effects of varied cerebrospinal fluid pressure on cerebral blood flow in dogs. Acta physiol. scand.79 (1970), 262–271.

    PubMed  Google Scholar 

  • Hamer, J., and E. Alberti, The effect of increased intracranial pressure on the venous pressure in the sagittal sinus of the dog. Proceedings of the German Society of Neurosurgery, International Congress Series, Excerpta Medica, Amsterdam 1973 (in press).

    Google Scholar 

  • Hermann, H. D., H. Palleske, and J. Dittmann, Studies on the CBF and problems of determination of the cerebral metabolism in patients with localized cerebral lesions. Cerebral Blood Flow, p. 179–180, ed. by M. Brock, C. Fieschi, D. H. Ingvar, N. A. Lassen, K. Schürmann. Berlin-Heidelberg-New York: Springer. 1969.

    Google Scholar 

  • Jennett, W. B., J. O. Rowan, A. M. Harper, I. M. Johnston, J. D. Miller, and V. D. Deshmukh, Perfusion pressure and cerebral blood flow. Brain and Blood Flow, p. 298–300, ed. by R. W. Russell. London: Pitman Medical and Scientific Publishing Co Ltd. 1971.

    Google Scholar 

  • Johnston, I. H., J. O. Rowan, A. M. Harper, and W. B. Jennett, Raised intracranial pressure and cerebral blood flow. Cisterna magna infusion in primates. J. Neurol. Neurosurg. Psychiat.35 (1972), 285–296.

    PubMed  Google Scholar 

  • Kety, S. S., and C. F. Schmidt, The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Amer. J. Physiol.143 (1945), 53–66.

    Google Scholar 

  • —, H. A. Shenkin, and C. F. Schmidt, The effect of increased intracranial pressure on cerebral circulatory functions in man. J. Clin. Invest.27 (1948), 493–499.

    Google Scholar 

  • Kjällquist, A., B. K. Siesjö, and N. Zwetnow, Effects of increased intracranial pressure on cerebral blood flow and on cerebral venous pO2, pCO2, pH, lactate and pyruvate in dogs. Acta physiol. scand.75 (1969a), 267–275.

    PubMed  Google Scholar 

  • — — —, Effects of increased intracranial pressure on cerebral blood flow and on cerebrospinal fluid HCO 3 , pH, lactate and pyruvate in dogs. Acta physiol. scand.75 (1969b), 345–352.

    PubMed  Google Scholar 

  • Langfitt, T. W., J. D. Weinstein, and N. F. Kassell, Cerebral vasomotor paralysis produced by intracranial hypertension. Neurology15 (1965), 622–641.

    PubMed  Google Scholar 

  • Lassen, N. A., Brain extracellular pH: The main factor controlling cerebral blood flow. Scand. J. clin. Lab. Invest.22 (1968), Editorial 247–251.

    PubMed  Google Scholar 

  • —, and O. B. Paulson, Partial cerebral vasoparalysis in patients with apoplexy: Dissociation between carbon dioxide respiration and auto-regulation. Cerebral Blood Flow, p. 117–119, ed. by M. Brock, C. Fieschi, D. H. Ingvar, N. A. Lassen, K. Schürmann. Berlin-Heidelberg-New York: Springer. 1969.

    Google Scholar 

  • Lundberg, N., Continuous recordings and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiat. Neurol. Scand. suppl.149 (1960), 1–193.

    Google Scholar 

  • MacMillan, V., and B. K. Siesjö, Cerebral energy metabolism in hypoxemia. Cerebral Blood Flow and Intracranial Pressure. Proc. 5th int. Symp., Roma-Siena 1971, part I. Europ. Neurol.6 (1971/72), 66–72.

    Google Scholar 

  • Matakas, F., M. Leipert, and J. Franke, Cerebral blood flow during increased subarachnoid pressure. The influence of systemic arterial pressure. Acta neurochir.25 (1971), 19–36.

    Google Scholar 

  • McDowall, D. G., W. Fitch, V. W. A. Pickerodt, N. J. Coroneos, and N. P. Keaney, Haemodynamic effects of experimental intracranial space-occupying lesions in passively-ventilated dogs and baboons. Cerebral Blood Flow and Intracranial Pressure. Proc. 5th int. Symp., Roma-Siena 1971. part II. Europ. Neurol.8 (1972), 92–96.

    PubMed  Google Scholar 

  • Miller, J. D., A. E. Stanek, and T. W. Langfitt, A comparison of autoregulation to changes in intracranial and arterial pressure in the same preparation. Cerebral Blood Flow and Intracranial Pressure. Proc. 5th int. Symp., Roma-Siena 1971, part I. Europ. Neurol.6 (1971/72), 34–38.

    Google Scholar 

  • Noell, W., und M. Schneider, Über die Durchblutung und Sauerstoffversorgung des Gehirns im akuten Sauerstoffmangel. Die arteriovenöse Sauerstoff -und Kohlensäuredifferenz. Pflügers Arch. ges. Physiol.246 (1942), 207–249.

    Google Scholar 

  • Palvölgyi, R., Regional cerebral blood flow in patients with intracranial tumors. J. Neurosurg.31 (1969), 149–163.

    PubMed  Google Scholar 

  • Piscol, K., S. Hoyer, J. Hamer, and B. Kontopoulos, Cerebral blood flow and cerebral metabolism of patients with growing and displacing intracranial processes. Present Limits of Neurosurgery, p. 53–55. Prague: Avicenum, Czechoslovac Medical Press. 1972.

    Google Scholar 

  • Raichle, M. E., J. B. Posner, and F. Plum, Cerebral blood flow during and after hyperventilation. Arch. Neurol.23 (1970), 394–403.

    PubMed  Google Scholar 

  • Reulen, H. J., U. Steude, W. Brendel und F. Medzihradesky, Elektrolyt -und Metabolitkonzentrationen im Gehirn nach normovolämiscner Drucksenkung. Z. f. ges. exp. Medizin146 (1968), 241–260.

    Google Scholar 

  • Shulman, K., and G. R. Verdier, Cerebral vascular resistance changes in response to cerebrospinal fluid pressure. Amer. J. Physiol.213 (1967), 1084–1088.

    PubMed  Google Scholar 

  • Siesjö, B. K., Metabolism and flow in the hypoxic brain. Cerebral Blood Flow and Intracranial Pressure. Proc. 5th int. Symp., Roma-Siena 1971, part I. Europ. Neurol.6 (1971/72), 43–48.

    Google Scholar 

  • —, and N. N. Zwetnow, The effect of hypovolemic hypotension on extra -and intracellular acid-base parameters and energy metabolism in the rat brain. Acta physiol. scand.79 (1970), 114–124.

    PubMed  Google Scholar 

  • Symon, L., Hyperaemia in the cerebral circulation. Brain and Blood Flow, p. 195–199, ed. by R. W. Russell. London: Pitman Medical and Scientific Publishing Co Ltd. 1971.

    Google Scholar 

  • Wahl, M., P. Deetjen, K. Thurau, D. H. Ingvar, and N. A. Lassen, Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface. Pflügers Arch. ges. Physiol.316 (1970), 152–163.

    Google Scholar 

  • Weinhardt, F., G. Quadbeck und S. Hoyer, Quantitative Bestimmung von Blutgasvolumina mit Hilfe der Gaschromatographie. Z. Prakt. Anästh.7 (1972), 337–347.

    Google Scholar 

  • Weinstein, J. D., T. W. Langfitt, and N. F. Kassell, Vasopressor response to increased intracranial pressure. Neurology14 (1964), 1118–1131.

    PubMed  Google Scholar 

  • Williams, D., and W. G. Lennox, The cerebral blood flow in arterial hypertension, arteriosclerosis and high intracranial pressure. Quart. J. Med.8 (1939), 185–194.

    Google Scholar 

  • Zwetnow, N. N., A. Kjällquist, and B. K. Siesjö, Cerebral blood flow during intracranial hypertension related to tissue hypoxia and to acidosis in cerebral extracellular fluids. Progress in Brain Research, Vol. 30, Cerebral Circulation, p. 87–92. Ed. by W. Luyendijk. Amsterdam. 1968.

  • —, The influence of an increased intracranial pressure on the lactate, pyruvate, bicarbonate, phosphocreatine, ATP, ADP and AMP concentrations of the cerebral cortex of dogs. Acta physiol. scand.79 (1970a), 158–166.

    PubMed  Google Scholar 

  • —, Effects of increased cerebrospinal fluid pressure on the blood flow and on the energy metabolism of the brain. Acta physiol. scand. suppl.339 (1970b), 1–31.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. H. Penzholz zum 60. Geburtstag gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamer, J., Hoyer, S., Stoeckel, H. et al. Cerebral blood flow and cerebral metabolism in acute increase of intracranial pressure. Acta neurochir 28, 95–110 (1973). https://doi.org/10.1007/BF01405406

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01405406

Keywords

Navigation