Skip to main content
Log in

Acquired hydrocephalus III

A pathophysiological study correlated with neuropathological findings and clinical manifestations

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

On the basis of the laws of Pascal and Laplace, it is shown that the ventricular dilatation in acquired hydrocephalus is due to a primary increase in the intraventricular pressure (IVP), and that a new steady state can be reached, whether the IVP is increased or normal. The pressure increase is due to a disproportion between the production and reabsorption of cerebrospinal fluid (CSF). As water and salts pass freely across the ependyma and the choroid plexus in hydrocephalus, the pressure increase is caused by an increased protein concentration in the ventricular CSF, leading to increased fluid contents according to the Gibbs-Donnan equilibrium. During the ventricular dilatation, the ependyma is destroyed, and the protein molecules penetrate into the subependymal part of the white matter. This results in a reduction in the colloid osmotic pressure of the ventricular CSF, and a new steady state can be reached, with a normal protein concentration in an increased volume.

The attendant microscopic changes in the ventricular wall were demonstrated in a patient with acquired hydrocephalus, and the observations made were in conformity with the results of a number of animal experiments.

The symptomatology of acquired hydrocephalus is in agreement with a primary affection of the axons running in the juxtaventricular part of the white matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R. D., Fisher, C. M., Hakim, S., Ojeman, R. G., Sweet, W. H., Symptomatic occult hydrocephalus with “normal” cerebrospinal fluid pressure. New Engl. J. Med.273 (1965), 117–126.

    PubMed  Google Scholar 

  2. Breig, A., Ekbom, K., Greitz, T., Kugelberg, E., Hydrocephalus due to elongated basilar artery. Lanceti (1967), 874–875.

    Google Scholar 

  3. Coblentz, J. M., Mattis, S., Zingesser, L. H., Kasoff, S. S., Wisniewski, H. M., Katzman, R., Presenile dementia. Arch. Neurol.29 (1973), 299–308.

    PubMed  Google Scholar 

  4. Dandy, W. E., Blackfan, K. D., Internal hydrocephalus: an experimental, clinical, and pathological study. Amer. J. Dis. Child.8 (1914), 406–482.

    Google Scholar 

  5. Davson, H., Dynamic aspects of cerebrospinal fluid. Dev. med. Child. Neurol.14, suppl.12 (1972), 1–16.

    Google Scholar 

  6. De Land, F. H., James Jr., A. E., Ladd, D. J., Konigsmark, B. W., Normal pressure hydrocephalus. Amer. J. Clin. Path.58 (1972), 58–63.

    Google Scholar 

  7. Di Chiro, G., Hammock, M. K., Bleyer, A., Spinal descent of cerebrospinal fluid in man. Neurology26 (1976), 1–8.

    PubMed  Google Scholar 

  8. Early, C. B., Fink, L. H., Some fundamental applications of the law of La Place in neurosurgery. Surg. Neurol.6 (1976), 185–189.

    Google Scholar 

  9. Eisenberg, H. M., McLennan, J. E., Welch, K., Treves, S., Radioisotope ventriculography in cats with kaolin-induced hydrocephalus. Radiology110 (1974), 399–402.

    PubMed  Google Scholar 

  10. Geschwind, N., The mechanism of normal pressure hydrocephalus. J. neurol. Sci.7 (1968), 481–493.

    PubMed  Google Scholar 

  11. Granholm, L., Svendgaard, N., Hydrocephalus following traumatic head injuries. Scand. J. Rehab. Med.4 (1972), 31–34.

    Google Scholar 

  12. Gutierrez, Y., Friede, R. L., Kaliney, W. J., Agenesis of arachnoid granulations and its relationship to communicating hydrocephalus. J. Neurosurg.43 (1975), 553–558.

    Google Scholar 

  13. Hakim, S., Adams, R. D., The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. J. neurol. Sci.2 (1965), 307–327.

    PubMed  Google Scholar 

  14. Hakim, S., Venegas, J. G., Burton, J. D., The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus. Surg. Neurol.5 (1976), 187–210.

    PubMed  Google Scholar 

  15. Hammock, M. K., Milhorat, T. H., Davis, D. A., Isotope cisternography and ventriculography in the diagnosis of hydrocephalus. Dev. med. Child. Neurol.16, suppl.32 (1974), 58–71.

    PubMed  Google Scholar 

  16. Heinz, E., Davis, D. O., Karp, H. R., Abnormal isotope cisternography in symptomatic occult hydrocephalus. Radiology95 (1970), 109–120.

    PubMed  Google Scholar 

  17. Hussey, F., Schanzer, B., Katzman, R., A simple constant-infusion manometric test for measurement of CSF absorption II. Clinical studies. Neurology20 (1970), 665–680.

    PubMed  Google Scholar 

  18. Jensen, F., Malmros, R., Hvid Hansen, H., Cold, G., Intraventricular isotope encephalography. A methodological study. Dan. med. Bull.24 (1977), 7–14.

    PubMed  Google Scholar 

  19. Jensen, F., Jensen, F. T., Acquired hydrocephalus I. A clinical analysis of 160 patient studied for hydrocephalus. Acta Neurochir. (Wien)46 (1979), 119–133.

    Google Scholar 

  20. Jensen, F., Olsen, K. J., Acquired hydrocephalus IV. Determination of the absorption rate of albumin from the cerebrospinal fluid. Acta Neurochir. (Wien) (in press).

  21. Jensen, F., Jensen, F. T., Acquired hydrocephalus V. Determination of the formation rate of albumin in the ventricular system. Acta Neurochir. (Wien) (in press).

  22. Jensen, F., Reske-Nielsen, E., Ratjen, E., Obstructive hydrocephalus following Pantopaque myelography. Neurorad. (in press).

  23. Koto, A., Rosenberg, G., Zingesser, L. H., Horoupian, D., Katzman, R., Syndrome of normal pressure hydrocephalus: possible relation to hypertensive and arteriosclerotic vasculopathy. J. neurol. neurosurg. psych.40 (1977), 73–79.

    Google Scholar 

  24. Little, J. R., Houser, O. W., Mac Carty, C. S., Clinical manifestations of aqueductal stenosis in adults. J. Neurosurg.43 (1975), 546–552.

    Google Scholar 

  25. Maemarou, A., Shulman, K., La Morgese, J., Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J. Neurosurg.43 (1975), 523–534.

    PubMed  Google Scholar 

  26. Messert, B., Henke, T. K., Langheim, W., Syndrome of akinetic mutism associated with obstructive hydrocephalus. Neurology16 (1966), 635–649.

    PubMed  Google Scholar 

  27. Milhorat, T. H., Clack, R. G., Hammock, M. K., McGrath, P. P., Structural, ultrastructural and permeability changes in the ependyma and surrounding brain favoring equilibration in progressive hydrocephalus. Arch. Neurol.22 (1970), 397–407.

    PubMed  Google Scholar 

  28. Milhorat, T. H., Hammock, M. K., Isotope ventriculography. Arch. Neurol.25 (1971), 1–8.

    PubMed  Google Scholar 

  29. Moore, M. T., Progressive akinetic mutism in cerebellar hemangioblastoma with “normal-pressure hydrocephalus”. Neurology19 (1969), 32–36.

    PubMed  Google Scholar 

  30. Page, L. K., Bresman, M. J., Lorenzo, A. V., Cerebrospinal fluid perfusion studies in childhood hydrocephalus. Surg. Neurol.1 (1973), 317–320.

    PubMed  Google Scholar 

  31. Pollay, M., CSF formation and mechanism of drainage. In: Cisternography and hydrocephalus, pp. 13–24. Springfield, Ill.: Ch. C Thomas. 1972.

    Google Scholar 

  32. Rinaldi, I., Harris, W. O., Di Chiro, G., Radionuclide cisternography in subdural hematomas. Radiology105 (1972), 597–602.

    PubMed  Google Scholar 

  33. Rubin, R. C., Hochwald, G. M., Tiell, M., Mizutani, H., Ghatak, N., Hydrocephalus I. Histological and ultrastructural changes in the preshunted cortical mantle. Surg. Neurol.5 (1976), 109–114.

    PubMed  Google Scholar 

  34. Rubin, R. C., Hochwald, G. M., Tiell, M., Lienicz, B. H., Hydrocephalus II. Cell number and size and myelin content of the preshunted cortical mantle. Surg. Neurol.5 (1976), 115–118.

    PubMed  Google Scholar 

  35. Rubin, R. C., Hochwald, G. M., Tiell, M., Epstein, F., Ghatak, N., Wisniewski, H., Hydrocephalus III. Reconstitution of the cerebral cortical mantle following ventricular shunting. Surg. Neurol.5 (1976), 179–183.

    PubMed  Google Scholar 

  36. Rudd, T. G., O'Neal, J. T., Nelp, W. B., Cerebrospinal fluid circulation following subarachnoid hemorrhage. J. Nucl. Med.12 (1971), 61–63.

    PubMed  Google Scholar 

  37. Schønheyder, F., Nørby, J., Biokemi. Universitetsforlaget i Aarhus (1959), 8–10.

  38. Singounas, E. G., Krasanakis, C., Karvounis, P. C., Observations on the pathogenesis of low pressure hydrocephalus. Analysis of 25 cases. Neurochir.19 (1976), 22–25.

    Google Scholar 

  39. Smith, D. E., Streicher, E., Milković, K., Klatzo, I., Observations on the transport of proteins by the isolated choroid plexus. Acta Neuropath.3 (1964), 372–386.

    Google Scholar 

  40. Stein, B. M., Fraser, R. A. R., Tenner, M. S., Normal pressure hydrocephalus: complication of posterior fossa surgery in children. Pediatrics49 (1972), 50–58.

    PubMed  Google Scholar 

  41. Strecker, E. P., James Jr., E. J., The evaluation of cerebrospinal fluid flow and absorption: clinical and experimental studies. Neurorad.6 (1973), 200–205.

    Google Scholar 

  42. Sweet, W. H., Silverstone, B., Soloway, S., Stetten, D., Studies of formation, flow and absorption of cerebrospinal fluid. Surg. Forum1 (1950), 376–381.

    Google Scholar 

  43. Sweet, W. H., Locksley, H. B., Formation, flow and reabsorption of cerebrospinal fluid in man. Proc. Soc. exp. biol. Med.84 (1963), 397–402.

    Google Scholar 

  44. Sweet, W. H., Histological development of tracer uses in CSF dynamics. In: Central nervous system investigation with radionuclides, pp. 39–51. Springfield, Ill.: Ch. C Thomas. 1971.

    Google Scholar 

  45. Sweet, W. H., Early uses of radioisotopic tracers in the study of CSF dynamics. In: Cisternography and hydrocephalus, pp. 545–553. Springfield, Ill.: Ch. C Thomas. 1972.

    Google Scholar 

  46. Sweet, W. H., Brownell, G. L., Scholl, J. A., Bowsher, D. R., Benda, P., Stickley, E. E., The formation, flow and absorption of cerebrospinal fluid; newer concepts based on studies with isotopes. In: Neurology and psychiatry in childhood, pp. 101–159. Baltimore: The Williams and Wilkins Co. 1974.

    Google Scholar 

  47. Timmons, G. D., Johnson, K. P., Aqueductal stenosis and hydrocephalus after mumps encephalitis. New Engl. J. Med.283 (1970), 1505–1507.

    PubMed  Google Scholar 

  48. Tonali, P., Laudisio, A., Belloni, G., Moschini, M., Functional obstructive hydrocephalus. Neurorad.5 (1973), 220–222.

    Google Scholar 

  49. Ucar, S., Florez, G., Garcia, J., Increased intracranial pressure associated with spinal cord tumours. Neurochir.19 (1976), 265–268.

    Google Scholar 

  50. Welch, K., Friedman, V., The cerebrospinal fluid valves. Brain83 (1960), 454–469.

    PubMed  Google Scholar 

  51. Welch, K., The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. In: Advances in neurology, pp. 247–332. New York: Raven Press. 1975.

    Google Scholar 

  52. Williams, J. P., Pribram, H. F. W., Lynde, R. H., Sharpe, A. R., Isotope cisternography in the evaluation of patients with subarachnoid hemorrhage. J. Nucl. Med.11 (1970), 592–596.

    PubMed  Google Scholar 

  53. Wozniak, M., McLone, D. G., Raimondi, A. J., Micro- and macrovascular changes as the direct cause of parenchymal destruction in congenital murine hydrocephalus. J. Neurosurg.43 (1975), 535–545.

    PubMed  Google Scholar 

  54. Yakovlev, P. I., Paraplegias of hydrocephalus. Amer. J. ment. Defic.51 (1947), 561–576.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, F. Acquired hydrocephalus III. Acta neurochir 47, 91–104 (1979). https://doi.org/10.1007/BF01404666

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01404666

Keywords

Navigation