Skip to main content
Log in

Contractile eukaryotic flagella: Centrin is involved

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Isolated transverse flagella ofPeridinium inconspicuum (Dinophyceae) undergo a rapid Ca2+-induced (50μM Ca2+) contraction in the absence of exogenous ATP. Longitudinal flagella from the same species do not contract under these conditions. Contraction leads to a supercoiling of the axoneme and a shortening of the paraxonemal fiber that accompanies the axoneme over most of its length. Using a polyclonal antibody generated against centrin, a 20 kDa Ca2+-modulated contractile protein of striated flagellar roots of the green flagellateTetraselmis striata, we have found that the paraxonemal fiber in transverse flagella of three taxa ofDinophyceae is immunoreactive by indirect immunofluorescence. The localization of the antigen in the paraxonemal fiber of transverse flagella was confirmed by two-colour double immunofluorescence using monoclonal mouse-anti-β-tubulin for identification of the axoneme. No structure was immunoreactive to anticentrin in the longitudinal flagella of all taxa. Electrophoretic and immunoblot analysis of isolated flagella ofP. inconspicuum show that the antigen is a 21 kDa protein, indicating that it is either centrin or a closely related protein. We conclude that centrin confers contractility to the transverse flagellum of dinoflagellates and possibly to other contractile eukaryotic flagella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASP-H:

artificial seawater medium with Hepes-buffer

BSA:

bovine serum albumine

DTT:

dithiothreitol

EGTA:

ethylene glycol bis(2-amino-ethylether)tetraacetic acid

FITC:

fluorescein isothiocyanate

MT:

buffer microtubule stabilizing buffer

PBS:

phosphate buffered saline

SDS:

sodium dodecyl sulfate

TLCK:

Nα-p-tosyl-l-lysine chloromethyl ketone

TRITC:

tetramethylrhodamine isothiocyanate

References

  • Afzelius BA (1969) Ultrastructure of cilia and flagella. In:Lima-de-Faria A (ed) Handbook of molecular cytology. North Holland, Amsterdam, pp 1219–1241

    Google Scholar 

  • Amos WB (1971) Reversible mechanochemical cycle in the contraction ofVorticella. Nature 229: 127–128

    PubMed  Google Scholar 

  • —,Routledge LM, Yew FF (1975) Calcium-binding proteins in a vorticellid contractile organeile. J Cell Sci 19: 203–213

    PubMed  Google Scholar 

  • Berdach JT (1977)In situ preservation of the transverse flagellum ofPeridinium cinctum (Dinophyceae) for scanning electron microscopy. J Phycol 13: 243–251

    Google Scholar 

  • Bessen M, Fay RB, Witman GB (1980) Calcium control of waveform in isolated axonemes ofChlamydomonas. J Cell Biol 86: 446–455

    PubMed  Google Scholar 

  • Bloodgood RA (1987) Glycoprotein dynamics in theChlamydomonas flagellar membrane. Adv Cell Biol 1: 97–130

    Google Scholar 

  • Cachon J, Cachon M (1984) A new Ca2+-dependent function of flagellar rootlets in dinoflagellates: the releasing of a parasite from its host. Biol Cell 52: 61–76

    Google Scholar 

  • — — (1985) Non-actin filaments and cell contraction inKofoidinium and other dinoflagellates. Cell Motil 5: 1–15

    Google Scholar 

  • — —,Boillot A (1983) Flagellar rootlets as myonemal elements for pusule contractility in dinoflagellates. Cell Motil 3: 61–77

    Google Scholar 

  • Cachon JM, Cachon M (1981) Movement by non-actin filament mechanisms. BioSystems 14: 313–326

    PubMed  Google Scholar 

  • Coling DE, Salisbury JL (1987) Purification and characterization of centrin, a novel calcium-modulated contractile protein. J Cell Biol 105: 1156 (Abstr)

    Google Scholar 

  • Forward RB (1974) Phototaxis by the marine dinoflagellateGymnodinium splendens Lebour. J Protozool 21: 321–315

    Google Scholar 

  • Gaines G, Taylor FJR (1985) Form and function of the dinoflagellate transverse flagellum. J Protozool 32: 290–296

    Google Scholar 

  • Gibbons IR (1981) Cilia and flagella of eukaryotes. J Cell Biol 91: 107–124

    Google Scholar 

  • —,Hiramoto Y, Mohri H, Satir P (1985) Fundamental problems of movement of cilia, eucaryotic flagella, and related systems: A seminar held under the U.S.-Japan cooperative science program. Cell Motil 5: 137–173

    Google Scholar 

  • Gray J (1928) Ciliary movement. Cambridge University Press, London

    Google Scholar 

  • Hand WG, Schmidt JA (1975) Phototactic orientation by the marine dinoflagellateGyrodinium dorsum Kofoid. II. Flagellar activity and overall response mechanisms. J Protozool 22: 494–498

    Google Scholar 

  • Hoffmann-Berling H (1958) Der Mechanismus eines neuen, von der Muskelkontraktion verschiedenen Kontraktionszyklus. Biochim Biophys Acta 27: 247–255

    PubMed  Google Scholar 

  • Huang B, Mengerson A, Lee VD, Schibler M (1987) Isolation, purification, and molecular cloning of a basal body-associated calcium-binding protein fromChlamydomonas. J Cell Biol 105: 694 (Abstr)

    Google Scholar 

  • —,Pitelka DR (1973) The contractile process in the ciliate,Stentor coeruleus. I. The role of microtubules and filaments. J Cell Biol 57: 704–728

    PubMed  Google Scholar 

  • Jahn TL, Bovee EC (1967) Motile behaviour of protozoa. In:Chen TT (ed) Research in protozoology. Pergamon Press, Oxford, pp 41–200

    Google Scholar 

  • —,Harmon WH, Landman M (1963) Mechanisms of locomotion in flagellates. I.Ceratium. J Protozool 10: 358–363

    PubMed  Google Scholar 

  • Johnson KA (1985) Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Ann Rev Biophys Biophys Chem 14: 161–189

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of the bacteriophage T4. Nature 277: 680–685

    Google Scholar 

  • LeBlond PH, Taylor FJB (1976) The propulsive mechanisms of the dinoflagellate transverse flagellum reconsidered. BioSystems 8: 33–39

    PubMed  Google Scholar 

  • Machemer H (1986) Electromotor coupling in cilia. Fortschr Zool 33: 205–250

    Google Scholar 

  • Maruyama T (1981) Motion of the longitudinal flagellum inCeratium tripos (Dinoflagellida)-a retractile flagellar motion. J Protozool 28: 328–336

    Google Scholar 

  • — (1982) Fine structure of the longitudinal flagellum inCeratium tripos, a marine dinoflagellate. J Cell Sci 58: 109–123

    PubMed  Google Scholar 

  • — (1985 a) Extraction model of the longitudinal flagellum ofCeratium tripos (Dinoflagellida): reactivation of flagellar retraction. J Cell Sci 75: 313–328

    PubMed  Google Scholar 

  • — (1985 b) Ionic control of the longitudinal flagellum inCeratium tripos (Dinoflagellida). J Protozool 32: 106–110

    Google Scholar 

  • McFadden GI, Melkonian M (1986 a) Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellateScherffelia dubia (Prasinophyceae). I.: Flagellar regeneration. Protoplasma 130: 186–198

    Google Scholar 

  • — — (1986 b) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25: 551–557

    Google Scholar 

  • —,Schulze D, Surek B, Salisbury JL, Melkonian M (1987) Basal body reorientation mediated by a Ca2+-modulated contractile protein. J Cell Biol 105: 903–912

    PubMed  Google Scholar 

  • Melkonian M (1982) Effect of divalent cations on flagellar scales in the green flagellateTetraselmis cordifomis. Protoplasma 111: 221–233

    Google Scholar 

  • —,Schulze D, McFadden GI, Robenek H (1988) A polyclonal antibody (anti-centrin) distinguishes between two types of fibrous flagellar roots in green algae. Protoplasma 144: 56–61

    Google Scholar 

  • Metzner P (1929) Bewegungsstudien an Peridineen. Z Bot 22: 225–265

    Google Scholar 

  • Moestrup Ø (1982) Flagellar structure in algae: a review with new observations particularly on the Chrysophyceae, Phaeophyceae (Fucophyceae), Euglenophyceae andReckertia. Phycologia 21: 427–528

    Google Scholar 

  • Naitoh Y, Sugino K (1984) Ciliary movement and its control inParamecium. J Protozool 31: 31–40

    Google Scholar 

  • Peters H (1929) Über Orts- und Geisselbewegung bei marinen Dinoflagellaten. Arch Protistenkd 67: 291–321

    Google Scholar 

  • Rees AJJ, Leedale GF (1980) The dinoflagellate transverse flagellum: three-dimensional reconstructions from serial sections. J Phycol 16: 73–80

    Google Scholar 

  • Salisbury JL (1983) Contractile flagellar roots: the role of calcium. J Submicrosc Cytol 15: 105–110

    Google Scholar 

  • —,Baron A, Surek B, Melkonian M (1984) Striated flagellar roots: isolation and partial characterization of a calcium modulated contractile organelle. J Cell Biol 99: 962–970

    PubMed  Google Scholar 

  • —,Baron AT, Coling DE, Martindale VE, Sanders MA (1986) Calcium-modulated contractile proteins associated with the Eucaryotic centrosome. Cell Motil 6: 193–197

    Google Scholar 

  • —,Floyd GL (1978) Calcium-induced contraction of the rhizoplast of a quadriflagellate green alga. Science 202: 975–977

    Google Scholar 

  • —,Sanders MA, Harpst L (1987) Flagellar root contraction and nuclear movement during flagellar regeneration inChlamydomonas reinhardtii. J Cell Biol 105: 1799–1805

    PubMed  Google Scholar 

  • Satir P (1985) Switching mechanisms in the control of ciliary motility. In:Satir BH (ed) Modern cell biology, vol 4. Alan R Liss, New York, pp 1–46

    Google Scholar 

  • Schulze D, Robenek H, McFadden GI, Melkonian M (1987) Immunolocalization of a Ca2+-modulated contractile protein in the flagellar apparatus of green algae: the nucleus-basal body connector. Eur J Cell Biol 45: 51–61

    Google Scholar 

  • Schütt F (1895) Der Peridineen der Plankton-Expedition. I. Studien über die Zellen der Peridineen. Ergebn D Plankton-Exped (Kiel und Leipzig) 4: 1–170

    Google Scholar 

  • Sleigh MA (1974) Patterns of movement of cilia and flagella. In:Sleigh MA (ed) Cilia and Flagella. Academic Press, New York, pp 79–92

    Google Scholar 

  • Starr RC, Zeikus JA (1987) UTEX-the culture collection of algae at the University of Texas. J Phycol [Suppl] 23: 1–47

    Google Scholar 

  • Surek B, Latzko E (1984) Visualization of antigenic proteins blotted onto nitrocellulose using the immuno-gold-staining (IGS)-method. Biochem Biophys Res Commun 121: 284–289

    PubMed  Google Scholar 

  • Taylor FJR (1975) Non-helical transverse flagella in dinoflagellates. Phycologia 14: 45–47

    Google Scholar 

  • — (1988) Dinoflagellates. In:Margulis L, Corliss JO, Melkonian M, Chapman DL (eds) Handbook of protoctista. Jones Bartlett, Boston (in press)

    Google Scholar 

  • Towbin H, Staehlin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354

    PubMed  Google Scholar 

  • Wright BL, Salisbury J, Jarvik JW (1985) A nucleus-basal body connector inChlamydomonas reinhardtii that may function in basal body localization or segregation. J Cell Biol 101: 1903–1912

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höhfeld, I., Otten, J. & Melkonian, M. Contractile eukaryotic flagella: Centrin is involved. Protoplasma 147, 16–24 (1988). https://doi.org/10.1007/BF01403874

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01403874

Keywords

Navigation