Skip to main content
Log in

Enantiomer-based specificity in pheromone communication by two sympatricGnathoirichus species (Coleoptera: Scolytidae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The aggregation pheromone ofGnathotrichus retusus was isolated and identified as (S)-(+)-sulcatol (6-methyl-5-hepten-2-ol). In laboratory and field experiments,G. retusus responded to (S)-(+)-sulcatol, but not to (±)-sulcatol, which was attractive to the sympatric species,G. sulcatus. G. sulcatus did not respond to optically pure (S)-(+)-sulcatol, but began to respond when ⩾ 1% (R)-(−)-sulcatol was present in an enantiomeric mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birch, M.C., Light, D.M., andMori, K. 1977. Selective inhibition of response ofIps pini to its pheromone by the (S)-(−)-enantiomer of ipsenol.Nature 270:738–739.

    Google Scholar 

  • Blum, M.S. 1977. Insect pheromones, pp. 209–236,in J.R. Plimmer (ed.). Pesticide Chemistry in the 20th Century. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Borden, J.H., andMcLean, J.A. 1979. Secondary attraction inGnathotrichus retusus and cross-attraction inG. sulcatus (Coleoptera: Scolytidae).J. Chem. Ecol 5:79–88.

    Google Scholar 

  • Borden, J.H., andStokkink, E. 1973. Laboratory investigation of secondary attraction inGnathotrichus sulcatus (Coleoptera: Scolytidae).Can. J. Zool. 51:469–473.

    Google Scholar 

  • Borden, J.H., Chong, L., Mclean, J.A., Slessor, K.N., andMori, K. 1976.Gnathotrichus sulcatus: Synergistic response to enantiomers of the aggregation pheromone sulcatol.Science 192:894–896.

    PubMed  Google Scholar 

  • Borden, J.H., Handley, J.R., Johnston, B.D., MacConnell, J.G., Silverstein, R.M., Slessor, K.N., Swigar, A.A., andWong, D.T.W. 1979. Synthesis and field testing of lineatin, the aggregation pheromone ofTrypodendron lineatum (Coleoptera: Scolytidae).J. Chem. Ecol. 5:681–689.

    Google Scholar 

  • Brownlee, R.G., andSilverstein, R.M. 1968. A micro-preparative gas chromatograph and modified carbon skeleton determinator.Anal. Chem. 40:2077–2079.

    Google Scholar 

  • Byrne, K.J., Siwgar, A.A., Silverstein, R.M., Borden, J.H., andStokkink, E. 1974. Sulcatol: population aggregation pheromone in the scolytid beetle,Gnathotrichus sulcatus.J. Insect Physiol. 20:1895–1900.

    PubMed  Google Scholar 

  • Byrne, K.J., Gore, W.E., Pearce, G.T., andSilverstein, R.M. 1975. Porapak-Q collection of airborne organic compounds serving as models for insect pheromones.,J. Chem, Ecol. 1:1–7.

    Google Scholar 

  • Iwaki, S., Marmo, S., Saito, T., Yamida, M., andKatagiri, K. 1974. Synthesis and activity of optically active disparlure.J. Am. Chem. Soc. 96:7842–7844.

    Google Scholar 

  • Johnston, B.D., andSlessor, K.N. 1979. Facile synthesis of the enantiomers of sulcatol.Can. J. Chem. 57:233–235.

    Google Scholar 

  • Lanier, G.N., andBurkholder, W.E. 1974. Pheromones in speciation of Coleoptera, pp. 161–189,in M.C. Birch (ed.). Pheromones. North Holland, Amsterdam.

    Google Scholar 

  • Lanier, G.N., andWood, D.L. 1975. Specificity of response to pheromones in the genusIps (Coleoptera: Scolytidae).J. Chem. Ecol. 1:9–23.

    Google Scholar 

  • MacConnell, J.G., Borden, J.H., Silverstein, R.M., andStokkink, E. 1977. Isolation and tentative identification of lineatin, a pheromone from the frass ofTrypodendron lineatum (Coleoptera: Scolytidae).J. Chem. Ecol. 3:549–561.

    Google Scholar 

  • McLean, J.A., andBorden, J.H. 1977. Suppression ofGnathotrichus sulcatus with sulcatol baited traps in a commerical sawmill and notes on the occurrence ofG. retusus andTrypodendron lineatum.Can. J. For. Res. 7:348–356.

    Google Scholar 

  • McLean, J.A., andBorden, J.H. 1979. An operational pheromone-based suppression program for an ambrosia beetle,Gnathotrichus sulcatus, in a commercial sawmill.J. Econ. Entomol. 72:165–172.

    Google Scholar 

  • Miller, J.R., Mori, K., andRoelofs, W.L. 1977. Gypsy moth field trapping and electroantennogram studies with pheromone enatiomers.J. Insect Physiol. 23:1447–1453.

    Google Scholar 

  • Plummer, E.L., Stewart, T.E., Byrne, K., Pearce, G.T., andSilverstein, R.M. 1976. Determination of the enantiomeric composition of several insect pheromone alcohols.J. Chem. Ecol. 2:307–331.

    Google Scholar 

  • Riley, R.G., Silverstein, R. M., andMoser, J.C. 1974. Biological responses ofAtta texana to its alarm pheromone and the enantiomer of the pheromone.Science 183:760–762.

    Google Scholar 

  • Schuler, H.R., andSlessor, K.N. 1977. Synthesis of enantiomers of sulcatol.Can. J. Chem. 55:3280–3287.

    Google Scholar 

  • Silverstein, R.M. 1971. Recent and current collaborative studies of insect pheromones, pp. 69–89,in A.S. Tahori (ed.). Chemical Releasers in Insects. Gordon and Breach, New York.

    Google Scholar 

  • Silverstein, R.M. 1977. Complexity, diversity, and specificity of behavior-modifying chemicals: Examples mainly from Coleoptera and Hymenoptera, pp. 231–251,in H.H. Shorey and J.J. McKelvey (eds.). Chemical Control of Insect Behavior: Theory and Application. John Wiley & Sons, New York.

    Google Scholar 

  • Silverstein, R.M. 1979. Enantiomeric composition and bioactivity of chiral semiochemicals in insects, pp. 133–146,in F.J. Ritter (ed.). Chemical Ecology: Odour Communication in Animals. Elsevier-North Holland, Amsterdam.

    Google Scholar 

  • Silverstein, R.M., andYoung, J.C. 1976. Insects generally use multicomponent pheromones, pp. 1–29,in M. Beroza (ed.). Pest Management with Insect Sex Attractants and Other Behavior-Controlling Chemicals. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Stewart, T.E., Plummer, E.L., McCandless, L.L., West, J.R., andSilverstein, R.M. 1977. Determination of the enantiomeric composition of several bicyclic ketal insect pheromone components.J. Chem. Ecol. 3:27–43.

    Google Scholar 

  • Tumlinson, J.H., Klein, M.G., Doolittle, R.E., Ladd, T.L., andProveaux, A.T. 1977. Identification of the female Japanese beetle sex pheromone: Inhibition of male response by an enantiomer.Science 197:789–792.

    Google Scholar 

  • Vité, J.P., Klimetzek, D., Loskant, G., Hedden, R., andMori, K. 1976. Chirality of insect pheromones: response interruption by active antipodes.Naturwissenschaften 63:582–583.

    Google Scholar 

  • Vité, J.P., Ohloff, G., andBillings, R.F. 1978. Pheromonal chirality, and integrity of aggregation response in southern species of the bark beetlesIps sp.Nature 272:817–818.

    Google Scholar 

  • Wood, D.L., andBushing, R.W. 1963. The olfactory response ofIps confusus (LeConte) (Coleoptera: Scolytidae) to the secondary attraction in the laboratory.Can. Entomol. 95:1066–1078.

    Google Scholar 

  • Wood, D.L., Browne, L.E., Ewing, B., Lindahl, K., Bedard, W.D., Tilden, P.E., Mori, K., Pitman, G.B., andHughes, P.R. 1976. Western pine beetle: specificity among enantiomers of male and female components of an attractant pheromone.Science 192:896–898.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the National Science Foundation, U.S.A. (Grant BMS-74-13643), and the Natural Sciences and Engineering Research Council of Canada (Co-op grant A0243 and Operating Grant A3881 and A3785).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordon, J.H., Handley, J.R., McLean, J.A. et al. Enantiomer-based specificity in pheromone communication by two sympatricGnathoirichus species (Coleoptera: Scolytidae). J Chem Ecol 6, 445–456 (1980). https://doi.org/10.1007/BF01402921

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01402921

Key words

Navigation