Skip to main content
Log in

Microlocal energy methods and pseudo-differential operators

  • Published:
Inventiones mathematicae Aims and scope

Abstract

A functionk(x, u) of the(n+n)-variables is said to be a positive Hermite kernel if\(k(x,u) = \overline {k(u,x)} \), and the matrix(k(x i, xj))i,j is positive semi-definite for every integerN and everyx 1, ..., xN. In this paper, we prove that this positive structure can be microlocalized in the category of microfunctions. Further we obtain a useful theorem concerning the positivity of pseudo-differential operators. This theory will play important roles in the study of analytic singularities of solutions of boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki, T.: Invertibility for microdifferential operators of infinite order. Publ. Res. Inst. Math. Sci.18, 1–29 (1982)

    Google Scholar 

  2. Aoki, T.: The exponential calculus of microdifferential operators of infinite order. II. Proc. Jap. Acad.58, 154–157 (1982)

    Google Scholar 

  3. Aoki, T.: Calcul exponentiel des opérateurs microdifférentiels d'ordre infini, I. Ann. Inst. Fourier, Grenoble33, 227–250 (1983)

    Google Scholar 

  4. Aoki, T.: The exponential calculus of microdifferential operators of infinite order. III. Proc. Jap. Acad.59, 79–82 (1983)

    Google Scholar 

  5. Aoki, T.: The exponential calculus of microdifferential operators of infinite order. IV. Proc. Jap. Acad.59, 186–187 (1983)

    Google Scholar 

  6. Berezanskiî, J.M.: Expansions in Eigenfunctions of Selfadjoint Operators. Transl. Math. Monogr.17, Am. Math. Soc. Providence, 1968

    Google Scholar 

  7. Bergman, S.: The Kernel Function and Conformal Mapping. Math. Surveys Number V, Am. Math. Soc. New York, 1950, Second Edition, Providence, Rhode Island, 1970

    Google Scholar 

  8. Bergman, S., Schiffer, M.: Kernel functions and conformal mapping. Compos. Math.8, 205–249 (1951)

    Google Scholar 

  9. Bony, J.M., Schapira, P.: Propagation des singularités analytiques pour les solutions des équations aux derivées partielles. Ann. Inst. Fourier26, 81–140 (1976)

    Google Scholar 

  10. Boutet de Monvel, L.: Opérateurs pseudo-différentiels analytiques et opérateurs d'ordre infini. Ann. Inst. Fourier, Grenoble,22, 229–268 (1972)

    Google Scholar 

  11. Boutet de Monvel, L.: Opérateurs pseudo-différentiels analytiques d'ordre infini. Astérisque2–3, 128–134 (1973)

    Google Scholar 

  12. Boutet de Monvel, L., Krée, P.: Pseudo-differential operators and Gevrey classes. Ann. Inst. Fourier17, 295–323 (1967)

    Google Scholar 

  13. Bremermann, H.: Holomorphic continuation of the kernel function and the Bergman metric in several complex variables. Univ. Michigan Press, Ann Arbor 349–383 (1955)

    Google Scholar 

  14. Donoghue, W.F. Jr.: Monotone Matrix Functions and Analytic Continuation. Die Grundlehren der mathematischen Wissenschaften, Band 207. Berlin, Heidelberg, New York: Springer 1974

    Google Scholar 

  15. Donoghue, W.F. Jr.: Reproducing kernel spaces and analytic continuation. Rocky Mt. J. Math.10–1, 85–97 (1980)

    Google Scholar 

  16. FitzGerald, C.: On analytic continuation to a schlicht function. Proc. Am. Math. Soc.18, 788–792 (1967)

    Google Scholar 

  17. Fuks, B.A.: Special Chapters in the Theory of Analytic Functions of Several Complex Variables. Vol.14, Am. Math. Soc., Providence Rhode Island, 1965

    Google Scholar 

  18. Kataoka, K.: Micro-local theory of boundary value problems I. J. Fac. Sci. Univ. Tokyo27, 355–399 (1980)

    Google Scholar 

  19. Kataoka, K.: Micro-local theory of boundary value problems II. J. Fac. Sci. Univ. Tokyo28, 31–56 (1981)

    Google Scholar 

  20. Kataoka, K.: On the theory of Radon transformations of hyperfunctions. J. Fac., Sci. Univ. Tokyo28, 331–413 (1981)

    Google Scholar 

  21. Krěin, M.G.: Hermitian-positive kernels on homogeneous spaces. I. Ukrain. Mat. Žurnal 14, 64–98 (1949): Am. Math. Soc. Transl. Ser. 234, 69–108 (1963)

    Google Scholar 

  22. Meschkowski, H.: Hilbertsche Räume mit Kernfunktion. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band113, Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  23. Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and Pseudo-differential Equations. In: Lecture Notes in Mathematics Vol.287, pp 265–529. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  24. Sjöstrand, J.: Propagation of analytic singularities for second order Dirichlet problems. Comm. Partial Differ. Equations5, 41–94 (1980)

    Google Scholar 

  25. Sjöstrand, J.: Singularités analytiques microlocales. Astérisque95, 1–166 (1982)

    Google Scholar 

  26. Skwarczýnski, M.: A continuation theorem for holomorphic mapping into a Hilbert space. Ann. Pol. Math.23, 281–284 (1970)

    Google Scholar 

  27. Sommer, F., Mehring, J.: Kernfunktion und Hüllenbildung in der Funktionentheorie mehrerer Veränderlichen. Math. Ann.131, 1–16 (1956)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kataoka, K. Microlocal energy methods and pseudo-differential operators. Invent Math 81, 305–340 (1985). https://doi.org/10.1007/BF01389055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01389055

Keywords

Navigation