Skip to main content
Log in

The wavelet transform on Sobolev spaces and its approximation properties

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We extend the continuous wavelet transform to Sobolev spacesH s(ℜ) for arbitrary reals and show that the transformed distribution lies in the fiber spaces\(L_2 \left( {\left( {\mathbb{R}_0 ,\frac{{da}}{{a^2 }}} \right),H^s \left( \mathbb{R} \right)} \right) \cong H^{0,s} \left( {\mathbb{R}^2 ,\frac{{dadb}}{{a^2 }}} \right)\). This generalisation of the wavelet transform naturally leads to a unitary operator between these spaces.

Further the asymptotic behaviour of the transforms ofL 2-functions for small scaling parameters is examined. In special cases the wevelet transform converges to a generalized derivative of its argument. We also discuss the consequences for the discrete wavelet transform arising from this property. Numerical examples illustrate the main result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P.: Applied functional analysis, New York: J. Wiley 1979

    Google Scholar 

  2. Daubechies. I.: The wavelet transform, time-frequency localisation and signal analysis. IEEE Trans. Autom. Control, (to appear)

  3. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Com. Pure Appl. Math.XLI, 909–996 (1988)

    Google Scholar 

  4. Daubechies, I., Grossmann, A., Mayer, M.: Painless nonorthogonal expansions. J. Math. Phys.27, 1271–1283 (1986)

    Google Scholar 

  5. Goupillaud, P., Grossmann, A., Morlet, J.: Cycle-octave and related transforms in seismic signal analysis. Geoexploration23, 85–102 (1984/85)

    Google Scholar 

  6. Grossmann, A., Holschneider, M., Kronland-Martinet, R., Morlet, J.: Detection of abrupt changes in soud singnals with the help of wavelet transform. Preprint, Center de Physique Théorique, CNRS, Marseille (France)

  7. Grossmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations I: General results. J. Math. Phys.26, 2473–2479 (1985)

    Google Scholar 

  8. Grossmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations II: Examples. Ann. Inst. Henri Poincaré,45, 293–309 (1986)

    Google Scholar 

  9. Kronland-Martinet, R., Morlet, J., Grossman, A.: Analysis of sound patterns through wavelet transforms. J. Pat. Recog. Art. Intell.II, 273–302 (1987)

    Google Scholar 

  10. Mallat S.: A theory for multiresolution signal decomposition: The wavelet representation. Preprint GRASP Lab., Dept. of Computer and Information Science, Univ. of Pennsylvania

  11. Mallat S.: A theory for multiresolution signal decomposition: The scale change representation. Preprint GRASP Lab., Dept. of Computer and information Science, Univ. of Pennsylvania

  12. Paul T.: Functions analytic on the half-plane as quantum mechanical states. J. Math. Phys. 25, 3252–3263 (1985)

    Google Scholar 

  13. Rudin W.: Functional analysis. New York: McGraw-Hill 1979

    Google Scholar 

  14. Weidmann J.: Linear operators in Hilbert spaces. New York Berlin Heidelberg: Springer 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft under grant Lo 310/2-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieder, A. The wavelet transform on Sobolev spaces and its approximation properties. Numer. Math. 58, 875–894 (1990). https://doi.org/10.1007/BF01385659

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385659

Subject classifications

Navigation