Skip to main content
Log in

Photofragmentation of mass resolved carbon cluster ions

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

The results of a detailed study of the photodissociation of carbon cluster ions, C +3 to C +20 , are presented and discussed. The experiments were performed using internally cold cluster ions derived from pulsed laser evaporation of a graphite target rod in a helium buffer gas followed by supersonic expansion. The mass selected clusters were photodissociated using 248 nm and 351 nm light from an excimer laser. Photofragment branching ratios, photodissociation cross sections and data on the laser fluence dependence of photodissociation are reported. For almost all initial clusters, C + n , the dominant photodissociation pathway was observed to be loss of a C3 unit to give a C + n−3 ion. This observation is interpreted as indicating that dissociation occurs by a statistical unimolecular process rather than by direct photodissociation. The photodissociation was found to be linear with laser fluence forn>5 with 248 nm and 351 nm light; quadratic forn=5 for 248 nm and 351 nm; and linear forn=4 at 248 nm. Dissociation energies for the carbon cluster ions implied by these results are discussed. The photodissociation cross sections were found to change dramatically with cluster size and with the wavelength of the photodissociating light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, Powers, D.E., Hansen, S.G., Geusic, M.E., Michalopoulos, D.L., Smalley, R.E.: J. Chem. Phys.78, 2866 (1983) Bondybey, V.E., Heaven, M., Miller, T.A.: J. Chem. Phys.78, 3593 (1983); Rohlfing, E.A., Cox, D.M., Kaldor, A.: J. Phys. Chem.88, 4497 (1984); Martin, T.P.: J. Chem. Phys.81, 4426 (1984); Richtsmeier, S.C., Parks, E.K., Liu, K., Pobo, L.G., Riley, S.J.: J. Chem. Phys.82, 3659 (1985); Preuss, D.R., Pace, S.A., Gole, J.L.: J. Chem. Phys.71, 3553 (1979); Jacobson, D.B., Frieser, B.S.: J. Am. Chem. Soc.107, 1581 (1985); Peterson, K.I., Dao, P.D., Farley, R.W., Castleman, A.W.: J. Chem. Phys.80 1780 (1984); Johnson, M.A., Alexander, M.L., Lineberger, W.C.: Chem. Phys. Lett.112, 285 (1984); Meckstroth, W.K., Ridge, D.P., Reents, W.D.: J. Phys. Chem.89, 612 (1985); Jarrold, M.F., Illies, A.J., Bowers, M.T.: J. Am. Chem. Soc.107, 7339 (1985); Knight, W.D., Klemenger, K., DeHeer, W.A.: Phys. Rev. B31, 2539 (1985).

    Google Scholar 

  2. Dietz, T.G., Duncan, M.A., Powers, D.E., Smalley, R.E.: J. Chem. Phys.74, 6511 (1981); Bondybey, V.E., English, J.H.: J. Chem. Phys.74, 6978 (1981)

    Google Scholar 

  3. See, for example, Dunbar, R.C.: Molecular ions: spectroscopy structure and chemistry. Miller, T.A., Bondybey, V.E. (ed.) Amsterdam: North Holland 1983; Moseley, J., Durup, J.: J. Chim. Phys.77, 673 (1980)

    Google Scholar 

  4. Drowart, J., Burns, R.P., DeMaria, G., Ingram, M.G.: J. Chem. Phys.31, 1131 (1959)

    Google Scholar 

  5. Honig, R.E.: J. Chem. Phys.22, 126 (1954); Berkowitz, J., Chupka, W.A.: J. Chem. Phys.40, 2735 (1964); Furstenau, N., Hillenkamp, F.: Int. J. Mass Spectrom. Ion Phys.37, 135 (1981)

    Google Scholar 

  6. Huber, K.P., Herzberg, G.: “Molecular spectra and molecular structure. Vol. IV Constants of diatomic molecules. New York: Van Nostrand 1979; Gausset, L., Herzberg, G., Lagerguist, A., Rosen, B.: Disc. Faraday Soc.35, 113 (1963); Thompson, K.R., DeKock, R.I., Weltner, W.: J. Am. Chem. Soc.93, 4688 (1971)

    Google Scholar 

  7. Pitzer, K.S., Clementi, E.: J. Am. Chem. Soc.81 4477 (1959); Strickler, S.J., Pitzer, K.S.: Molecular orbitals in chemistry physics and biology. Pullman, B., Lowden, P.O. (eds.). New York: Academic Press 1964; Hoffman, R.: Tetrahedron22, 521 (1966)

    Google Scholar 

  8. Fougere, P.F., Nesbit, R.K.: J. Chem. Phys.44, 285 (1966); Peric-Radic, J., Romelt, J., Peyerimhoff, S.D., Buenker, R.J.: Chem. Phys. Lett.50, 344 (1977); Romelt, J., Peyerimhoff, S.D., Buenker, R.J.: Chem. Phys. Lett.58, 1 (1978); Ewing, D.W., Pfeiffer, G.V.: Chem. Phys. Lett.86, 365 (1982)

    Google Scholar 

  9. Whiteside, R.A., Krishnan, R., DeFrees, D.J., Pople, J.A., Schleyer, P. von R.: Chem. Phys. Lett.78, 538 (1981)

    Google Scholar 

  10. Rohlfing, E.A., Cox, D.M., Kaldor, A.: J. Chem. Phys.81, 3322 (1984)

    Google Scholar 

  11. Kroto, H.W., Heath, J.R., O'Brian, S.C., Curl, R.F., Smalley, R.E.: Nature318, 162 (1985); Heath, J.R., O'Brian, S.C., Zhang, Q., Liu, Y., Curl, R.F., Kroto, H.W., Tittel, F.K., Smalley, R.E.: J. Am. Chem. Soc.107, 7779 (1985); Zhang, Q.L., O'Brian, S.C., Health, J.R., Liu, Y., Curl, R.F., Kroto, H.W., Smalley, R.E.: J. Phys. Chem.90, 525 (1986)

    Google Scholar 

  12. Cox, D.M., Trevor, D.J., Reichmann, K.C., Kaldor, A.: J. Am. Chem. Soc. (in press)

  13. Bloomfield, L.A., Geusic, M.E., Freeman, R.R., Brown, W.L.: Chem. Phys. Lett.121, 33 (1985)

    Google Scholar 

  14. The absolute scale is derived from the dimensions of the photodissociating laser beam at the point of photodissociation. The laser beam goes through a small aperature just before entering the vacuum system and appears homogeneous at the point of photodissociation. For clusters with large photodissociation cross sections we were able to deplete the parent by >80% with large laser fluences which indicates that there is good overlap between the cluster ion packet and the photodissociating laser beam. The absolute scale is probably reliable to within a factor of two

  15. Bloomfield, L.A., Freeman, R.R., Brown, W.L.: Phys. Rev. Lett.54, 2246 (1985)

    Google Scholar 

  16. Bloomfield, L.A., Freeman, R.R., Brown, W.L.: unpublished data

  17. See, for example, Jarrold, M.F., Bass, L.M., Kemper, P.R., Koppen, P.A.M. van, Bowers, M.T.: J. Chem. Phys.78, 3756 (1983)

    Google Scholar 

  18. Rosenstock, H.M., Draxl, K., Steiner, B.W., Herron, J.T.: J. Phys. Chem. Ref. Data6, Supplement No. 1 (1977), (Energetics of Gaseous Ions)

  19. Raghavachari, K.: Private communication

  20. McElvany, S.W., Creasy, W.R., O'Keefe, A.: J. Chem. Phys. (in press)

  21. Geusic, M.E., McIlrath, T.J., Jarrold, M.F., Bloomfield, L.A., Freeman, R.R., Brown, W.L.: J. Chem. Phys.84, 2421 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Institute of Physical Sciences and Technology, University of Maryland, College Park, MD 20742, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geusic, M.E., Jarrold, M.F., McIlrath, T.J. et al. Photofragmentation of mass resolved carbon cluster ions. Z Phys D - Atoms, Molecules and Clusters 3, 309–317 (1986). https://doi.org/10.1007/BF01384821

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01384821

PACS

Navigation