Skip to main content
Log in

Microtubules and morphogenesis in ordinary epidermal cells ofVigna sinensis leaves

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Undifferentiated ordinary epidermal cells (ECs) ofVigna sinensis leaves possess straight anticlinal walls and cortical microtubules (Mts) scattered along them. At an early stage of EC differentiation cortical Mts adjacent to the above walls form bundles normal to the leaf plane, loosely interconnected through the cortical cytoplasm of the internal periclinal wall. At the upper ends of the Mt bundles, Mts fan out towards the external periclinal wall and form radial arrays. Mt bundles and radial arrays exhibit strict alternate disposition between neighbouring ECs. An identical reticulum of cellulose microfibril (CM) bundles is deposited outside the Mt bundles. Local wall pads rise at the junctions of anticlinal walls with the external periclinal one, where the CM bundles terminate. They display radial CMs fanning towards the external periclinal wall. The CM bundles and radial CM systems prevent local cell bulging, but allow it in the intervening wall areas. In particular, the radial CM systems dictate the pattern of EC waviness by favouring local tangential expansion of external periclinal wall. As a result, ECs obtain an undulate appearance. “Constrictions” in one EC correspond with protrusions of adjacent ECs. ECs affected by colchicine entirely lose their Mts and do not develop wavy walls, an observation substantiating the role of cortical Mts in EC morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CM:

cellulose microfibril

DTT:

dithiothreitol

EC:

epidermal cell

MSB:

microtubule stabilizing buffer

Mt:

microtubule

PBS:

phosphate buffered saline

PMSF:

phenylmethylsulfonyl fluoride

References

  • Anheisser R (1900) Über die aruncoide Blattspreite. Flora 87: 64–94

    Google Scholar 

  • Apostolakos P, Galatis B, Katsaros C, Schnepf E (1990) Tubulin conformation in microtubule-free cells ofVigna sinensis. An immunofluorescent and electron microscope study. Protoplasma 154: 132–143

    Google Scholar 

  • — —, Panteris E (1991) Microtubules in cell morphogenesis and intercellular space formation inZea mays leaf mesophyll andPilea cadierei epithem. J Plant Physiol 137: 591–601

    Google Scholar 

  • Areschoug FWC (1897) Über die physiologischen Leistungen und die Entwickelung des Grundgewebes des Blattes. Kongl Fysiogr Sallsk, Lund, Handlingar

    Google Scholar 

  • Avery GS (1933) Structure and development of the tobacco leaf. Amer J Bot 20: 565–592

    Google Scholar 

  • Cho SO, Wick SM (1989) Microtubule orientation during stomatal differentiation in grasses. J Cell Sci 92: 581–594

    Google Scholar 

  • Cleary AL, Hardham AR (1989) Microtubule organization during development of stomatal complexes inLolium rigidum. Protoplasma 149: 67–81

    Google Scholar 

  • Esau K (1965) Plant anatomy. Wiley, New York

    Google Scholar 

  • Galatis B (1980) Microtubules and guard cell morphogenesis inZea mays L. J Cell Sci 45: 211–244

    PubMed  Google Scholar 

  • — (1988) Microtubules and epithem cell morphogenesis in hydathodes ofPilea cadierei. Planta 176: 287–297

    Google Scholar 

  • — (1991) Aberrant sieve element differentiation in primary leaves ofVigna sinensis Endl. affected by colchicine. New Phytol 117: 619–631

    Google Scholar 

  • —, Mitrakos K (1980) The ultrastructural cytology of the differentiating guard cells ofVigna sinensis. Amer J Bot 67: 1243–1261

    Google Scholar 

  • —, Apostolakos P, Katsaros C (1983) Microtubules and their organizing centres in differentiating guard cells ofAdiantum capillus veneris. Protoplasma 115: 176–192

    Google Scholar 

  • Haberlandt G (1882) Vergleichende Anatomie des assimilatorischen Gewebesystems der Pflanzen. Jahrb Wiss Bot 13: 74–188

    Google Scholar 

  • Harrington B, Raper KB (1968) Use of a fluorescent brightener to demonstrate cellulose in the cellular slime molds. Appl Microbiol 16: 106–113

    PubMed  Google Scholar 

  • Herth W, Schnepf E (1980) The fluorochrome, Calcofluor white, binds oriented to structural polysaccharide fibrils. Protoplasma 105: 129–133

    Google Scholar 

  • Jung G, Wernicke W (1990) Cell shaping and microtubules in developing mesophyll of wheat (Triticum aestivumL.). Protoplasma 153: 141–148

    Google Scholar 

  • Linsbauer K (1930) Die Epidermis. Borntraeger, Berlin (Handbuch der Pflanzenanatomie, Abt I Teil 2, Bd 4)

    Google Scholar 

  • Mauseth JD (1988) Plant anatomy. Benjamin/Cummings, Menlo Park, CA

    Google Scholar 

  • Napp-Zinn K (1973) Anatomie des Blattes. II Angiospermen. Gebrüder Borntraeger, Berlin (Encyclopedia of plant anatomy)

    Google Scholar 

  • Nick P, Bergfeld R, Schäfer E, Schopfer P (1990) Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls. Planta 181: 162–168

    PubMed  Google Scholar 

  • Palevitz BA, Mullinax JB (1989) Developmental changes in the arrangement of cortical microtubules in stomatal cells of oat (Avena sativa L.). Cell Motil Cytoskeleton 13: 170–180

    Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (1993) Microtubule organization, mesophyll cell morphogenesis and intercellular space formation inAdiantum capillus veneris leaflets. Protoplasma 172: 97–110

    Google Scholar 

  • Watson RW (1942) The effect of cuticular hardening on the form of epidermal cells. New Phytol 41: 223–229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panteris, E., Apostolakos, P. & Galatis, B. Microtubules and morphogenesis in ordinary epidermal cells ofVigna sinensis leaves. Protoplasma 174, 91–100 (1993). https://doi.org/10.1007/BF01379041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01379041

Keywords

Navigation