Skip to main content
Log in

Messung der kontinuierlichen Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische Vektorpotential einer Wolfram-Wendel

  • Published:
Zeitschrift für Physik

Abstract

An electron interferometer with three biprism fibres is described in which a continuously variable magnetic flux in a long solenoid coil of less than 20 μ diameter can be enclosed by two coherent parts of an electron beam. The partial beams can be separated up to distances of 60 μ without violating the coherence condition if the electron line source is made as narrow as about 100 Å units. The continuous phase shifting action of the enclosed flux on electron waves in a field free space can be demonstrated, and it is found that at normal temperature there is no quantization of magnetic flux in quanta of the orderΦ 0=h/e=4,13·10−7 Gauss cm2. The flux required to cause a phase difference of 2π is measured and found to coincide with the theoretical valueΦ 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Herrn Professor Dr. G.Möllenstedt danke ich herzlich für die Anregung und Förderung dieser Arbeit.

Herrn Dozent Dr. F.Lenz bin ich für wertvolle theoretische Hinweise dankbar.

Der Deutschen Forschungsgemeinschaft und der Arbeitsgemeinschaft für Elektronen-Optik danke ich für apparative und personelle Unterstützung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayh, W. Messung der kontinuierlichen Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische Vektorpotential einer Wolfram-Wendel. Z. Physik 169, 492–510 (1962). https://doi.org/10.1007/BF01377927

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01377927

Navigation