Skip to main content
Log in

On the diameter and bisector size of Cayley graphs

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

We present bounds on two combinatorial properties of Cayley graphs in terms relating to the structure of their underlying group, Included in this work is a presentation of lower bounds on the diameter of Cayley graphs of groups with nilpotent subgroups and upper bounds on the size of node bisectors of Cayley graphs of groups with solvable subgroups.

Cayley graphs, being endowed with algebraic structure, have been increasingly recognized as a source of interconnection networks underlying parallel computers. Their structure has been shown to endow parallel architectures with advantages, for example, in terms of algorithmic efficiency. Our results demonstrate limits on the communication power of certain classes of well-structured interconnection networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ajtai, J. Komlós, and E. Szemerédi (1983): Sorting inc logn parallel steps.Combinatorica 3, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. B. Akers and B. Krishnamurthy (1987): The fault tolerance of star graphs.Proc. 2nd Internat. Conf. on Supercomputing, pp. 270–276.

  3. S. B. Akers and B. Krishnamurthy (1989): A group-theoretic model for symmetric interconnection networks.IEEE Trans. Comput. 38, 555–566.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Annexstein, M. Baumslag, and A. L. Rosenberg (1990): Group-action graphs and parallel architectures.SIAM J. Comput. 19(3), 544–569.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Babai (1991): Local expansion of vertex transitive graphs and random generation in finite groups.Proc. 23rd ACM Symp. on Theory of Computing, pp. 164–174.

  6. L. Babai, G. Hetyei, W. M. Kantor, A. Lubotsky and A. Seress (1990): On the diameter of finite groups.Proc. 31st IEEE Symp. on Foundations of Computer Science, pp. 857–865.

  7. L. Babai, W. M. Kantor, and A. Lubotsky (1989): Small diameter cayley graphs for finite simple groups.European J. Combin. 10(6), 507–522.

    MathSciNet  MATH  Google Scholar 

  8. H. Bass (1972): The degree of polynomial growth for finitely generated nilpotent groups.Proc. London Math. Soc. 25, 603–614.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Baumslag and A. L. Rosenberg (1991): Processor-time tradeoffs for cayley graph interconnection networks.Proc. 6th Distributed Memory Computing Conf., pp. 630–636.

  10. L. Campbell, G. E. Carlsson, V. Faber, M. R. Fellows, M. A. Langston, J. W. Moore, A. P. Mullhaupt, and H. B. Sexton (1988): Dense symmetric networks from linear groups and codes. Computer Science Technical Report CS-88-192, Washington State University.

  11. G. E. Carlsson, J. E. Cruthirds, H. B. Sexton, and C. G. Wright (1985): Interconnection networks based on a generalization of cube-connected cycles.IEEE Trans. Comput. 34, 769–772.

    Article  MATH  Google Scholar 

  12. G. E. Carlsson, M. R. Fellows, H. B. Sexton, and C. G. Wright (1988): Group theory as an organizing principle in parallel processing.J. Combin. Theory Combin. Comput. 3.

  13. R. N. Draper (1991): An overview of supertoroidal networks.Proc. 3rd ACM Symp. on Parallel Algorithms and Architectures, pp. 95–102.

  14. V. Faber (1989): Global communication algorithms for hypercubes and other Cayley coset graphs.SIAM J. Discrete Math.

  15. P. Feldman, J. Friedman, and N. Pippenger (1988): Wide-sense nonblocking networks.SIAM J. Discrete Math. 1(2), 158–173.

    Article  MathSciNet  MATH  Google Scholar 

  16. O. Gabber and Z. Galil (1981): Explicit constructions of linear-sized superconcentrators.J. Comput. System Sci. 22, 407–420.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. P. Greenleaf (1969):Invariant Means on Topological Groups, Van Nostrand, New York.

    MATH  Google Scholar 

  18. M. Gromov (1981): Groups of polynomial growth and expanding maps.Publ. Math. IHES 53, 53–78.

    MathSciNet  MATH  Google Scholar 

  19. M. Hall, Jr. (1976):Theory of Groups. Chelsea, New York.

    MATH  Google Scholar 

  20. M. Klawe (1984): Limitations on explicit constructions of expanding graphs.SIAM J. Comput. 13(1), 156–166.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. T. Leighton and B. Maggs (1989): Expanders might be practical: fast algorithms for routing around faults on multibutterflies.Proc. 30th IEEE Symp. on Foundations of Computer Science, pp. 384–389.

  22. A. Lubotsky (1990): Discrete Groups, Expanding Graphs, and Invariant Measures. Unpublished manuscript.

  23. A. Lubotsky, R. Phillips, and P. Sarnak (1988): Ramanujan graphs.Combinatorica 8(3), 261–277.

    Article  MathSciNet  Google Scholar 

  24. G. Margulis (1975): Explicit constructions of concentrators.Problemy Peredachi Informatisii 9(4), 71–80(Problems Inform. Transmission,10, 325–332).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A portion of this research was supported by National Science Foundation Grant CCR-88-12567 while both authors were attending the University of Massachusetts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annexstein, F., Baumslag, M. On the diameter and bisector size of Cayley graphs. Math. Systems Theory 26, 271–291 (1993). https://doi.org/10.1007/BF01371728

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01371728

Keywords

Navigation