Skip to main content
Log in

Cell cultures and nephrolithiasis

  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

While the physical chemistry of stone formation has been intensively studied during the last decade, it has become clear that the pathophysiology of renal stone disease cannot be explained by crystallization processes only. In recent years, evidence has emerged that the cells lining the renal tubules can have an active role in creating the conditions under which stones may develop. Since it is difficult to study these mechanisms in vivo, cultured renal tubular cells have become increasingly popular for the study of physiological and cell biological processes that are possibly linked to stone disease. In this paper, we discuss the possible contribution of cellular processes such as transepithelial oxalate transport and crystal-cell interaction to the formation of renal stones. Experimental studies that have been performed with cultured renal cells to elucidate the mechanisms involved in these processes will be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson PS (1989) The renal proximal tubule: a model for diversity of anion exchangers and stilbene-sensitive anion transporters. Annu Rev Physiol 51: 419–441

    PubMed  Google Scholar 

  2. Aronson PS (1996) Role of ion exchangers in mediating NaCl transport in the proximal tubule. Kidney Int 49: 1665–1670

    PubMed  Google Scholar 

  3. Baggio B, Gambaro G, Ossi E, Favaro S, Borsatti A (1983) Increased urinary excretion of renal enzymes in idiopathic calcium oxalate nephrolithiasis. J Urol 129: 1161–1162

    PubMed  Google Scholar 

  4. Baggio B, Gambaro G, Marchini F, Borsatti A, Clari G, Moret V (1984) Relation between band 3 red blood cell protein and transmembrane oxalate flux in stone formers. Lancet II: 223–224

    Google Scholar 

  5. Besseghir K, Roch-Ramel F (1987) Renal excretion of drugs and other xenobiotics. Renal Physiol 10: 221–241

    PubMed  Google Scholar 

  6. Bigelow MW, Wiessner JH, Kleinman JG, Mandel NS (1996) Calcium oxalate-crystal membrane interactions: dependence on membrane lipid composition. J Urol 155: 1094–1098

    PubMed  Google Scholar 

  7. Boeve ER, Cao LC, Schrbder FH, Ketelaars GAM, Vermey M, Bruijn WC de (1990) The influence of 3 exogeneous glycosaminoglycans on the experimental induction of microliths in rats. Urol Res 18: 62

    Google Scholar 

  8. Borsatti A (1991) Calcium oxalate nephrolithiasis: defective oxalate transport. Kidney Int 39: 1283–1298

    PubMed  Google Scholar 

  9. Brenner BM, Rector FC (eds) (1996) The Kidney, 5th edn. Saunders, Philadelphia

    Google Scholar 

  10. Bruijn WC de, Boeve ER, van Run PRWA, van Miert PPMC, Romijn JC, Verkoelen CF, Cao LC, Schrbder FH (1994) Etiology of experimental calcium oxalate monohydrate nephrolithiasis in rats. Scanning Microsc 3: 541–550

    Google Scholar 

  11. Cao LC, Boeve ER, Schrbder FH, Robertson WG, Ketelaars GAM, Bruijn WC de (1992) The effect of two new semi-synthetic glycosaminoglycans (G871, G872) on the zeta potential of calcium oxalate crystals and on growth and agglomeration. J Urol 147: 1643–1646

    PubMed  Google Scholar 

  12. Corman B, Roy C, Roinel N, Rouffignac C de (1984) Fluid composition of basolateral space of kidney cells in culture and its modification by intracellular cAMP. Am J Physiol 246: C546-C550

    PubMed  Google Scholar 

  13. Fuller S, Von Bonsdorf C-H, Simons K (1984) Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line, MDCK. Cell 38: 65–77

    PubMed  Google Scholar 

  14. Gambaro G, Baggio B (1992) Idiopathic calcium oxalate nephrolithiasis: a cellular disease. Scanning Microsc 6: 247–254

    PubMed  Google Scholar 

  15. Gambaro G, Petrarulo M, Nardelotto A, Marangella M, Baggio B (1995) Erythrocyte transmembrane flux and renal clearance of oxalate in idiopathic calcium nephrolithiasis. Kidney Int 48: 1549–1552

    PubMed  Google Scholar 

  16. Gausch CR, Hard WL, Smith TF (1966) Characterization of an established line of canine kidney cells (MDCK). Proc See Exp Biol Med 122: 931–935

    Google Scholar 

  17. Gill WB, Jones KW, Ruggiero KJ (1981) Protective effects of heparin and other sulfated glycosaminoglycans on crystal adhesion to injured urothelium. J Urol 127: 152–154

    Google Scholar 

  18. Goswami A, Singhal PC, Wagner JD, Urivetzki M, Valderrama E, Smith AD (1995) Matrix modulates uptake of calcium oxalate crystals and cell growth of renal epithelial cells. J Urol 152: 206–211

    Google Scholar 

  19. Greger R, Lang F, Oberleithner H, Deetjen P (1978) Handling of oxalate by the rat kidney. Pfltigers Arch 374: 243–248

    Google Scholar 

  20. Gstraunthaler GJA (1988) Epithelial cells in tissue culture. Renal Physiol Biochem 11: 1–42

    PubMed  Google Scholar 

  21. Hackett RL, Shevock PN, Kahn SR (1990) Cell injury associated calcium oxalate crystalluria. J Urol 144: 1535–1538

    PubMed  Google Scholar 

  22. Hackett RL, Shevock PN, Kahn SR (1994) Madin-Darby canine kidney cells are injured by exposure to oxalate and to calcium oxalate crystals. Urol Res 22: 197–204

    PubMed  Google Scholar 

  23. Hackett RL, Shevock PN, Kahn SR (1995) Alterations in MDCK and LLC-PKI cells exposed to oxalate and calcium oxalate monohydrate crystals. Scanning Microsc 9: 587–596

    PubMed  Google Scholar 

  24. Hammes MS, Lieske JC, Pawar S, Spargo BH, Toback FG (1995) Calcium oxalate monohydrate crystals stimulate gene expression in renal epithelial cells. Kidney Int 48: 501–509

    PubMed  Google Scholar 

  25. Handler JS (1989) Overview of epithelial polarity. Annu Rev Physiol 51: 729–740

    PubMed  Google Scholar 

  26. Handler JS, Perkins FM, Johnson JP (1980) Studies of renal cell function using cell culture techniques. Am J Physiol 238: F1-F9

    PubMed  Google Scholar 

  27. Hatch M (1993) Oxalate status in stone-formers. Two distinct hyperoxaluric entities. Urol Res 21: 55–59

    PubMed  Google Scholar 

  28. Kahn SR, Hackett RL (1991) Retention of calcium oxalate crystals in renal tubules. Scanning Microsc 5: 707–712

    PubMed  Google Scholar 

  29. Kahn SR, Hackett RL (1993) Hyperoxaluria, enzymuria and nephrolithiasis. Contrib Nephrol 101: 190–193

    PubMed  Google Scholar 

  30. Kahn SR, Shevock PN, Hackett RL (1989) Urinary enzymes and calcium oxalate urolithiasis. J Urol 142: 846–849

    PubMed  Google Scholar 

  31. Karniski LP, Aronson PS (1985) Chloride/formate exchange with formic acid recycling: A mechanism of active chloride transport across epithelial membranes. Proc Natl Acad Sci USA 82: 63–62

    PubMed  Google Scholar 

  32. Kasidas GP (1988) Assays of oxalate and glycollate in urine. In: Rose GA (ed) Oxalate metabolism in relation to urinary stone. Springer, Berlin Heidelberg New York, p 26

    Google Scholar 

  33. Knight TF, Sansom SC, Senekjian HO, Weinman EJ (1981) Oxalate secretion in the rat proximal tubule. Am J Physiol 240: F295-F298

    PubMed  Google Scholar 

  34. Kok DJ (1997) Intratubular crystallization events. World J Urol 15: (this issue)

  35. Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46: 847–854

    PubMed  Google Scholar 

  36. Koul H, Ebisuno S, Renzulli, Yanagawa M, Menon M, Scheid C (1994) Polarized distribution of oxalate transport systems in LLC-PKI cells a line of renal epithelial cells. Am J Physiol 266: F266

    PubMed  Google Scholar 

  37. Koul H, Kennington L, Nair G, Honeyman T, Menon M, Scheid C (1994) Oxalate-induced initiation of DNA synthesis in LLC-PKI cells, a line of renal epithelial cells. Biochem Biophys Res Commun 205: 1632–1637

    PubMed  Google Scholar 

  38. Koul H, Kennington L, Honeyman T, Jonassen J, Menon M, Scheid C (1996) Activation of c-myc gene mediates the mitogenic effects of oxalate in LLC-PKI cells, a line of renal epithelial cells. Kidney Int 50: 1525–1530

    PubMed  Google Scholar 

  39. Kreisberg JI, Wilson PD (1988) Renal cell culture. J Electron Microsc Techn 9: 235–263

    Google Scholar 

  40. Lieske JC, Toback FG (1993) Regulation of renal epithelial cell endocytosis of calcium oxalate monohydrate crystals. Am J Physiol 264: F800-F807

    PubMed  Google Scholar 

  41. Lieske CL, Spargo BH, Toback FG (1992) Endocytosis of calcium oxalate crystals and proliferation of renal tubular epithelial cells in a patient with type 1 primary hyperoxaluria. J Urol 148: 1517–1519

    PubMed  Google Scholar 

  42. Lieske JC, Walsh-Reitz MM, Toback FG (1992) Calcium oxalate monohydrate crystals are endocytosed by renal epithelial cells and induce proliferation. Am J Physiol 262: F622-F630

    PubMed  Google Scholar 

  43. Lieske JC, Swift H, Martin T, Patterson B, Toback FG (1994) Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proc Natl Acad Sci USA 91: 6987–6991

    PubMed  Google Scholar 

  44. Lieske JC, Leonard R, Toback FG (1995) Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells in inhibited by specific anions. Am J Physiol 268: F604-F612

    PubMed  Google Scholar 

  45. Lieske JC, Leonard R, Swift H, Toback FG (1996) Adhesion of calcium oxalate monohydrate crystals to anionic sites on the surface of epithelial cells. Am J Physiol 270: F192-F199

    PubMed  Google Scholar 

  46. Louvard D (1980) Apical membrane aminopeptidase appears at sites of cell-cell contact in cultured epithelial cells. Proc Natl Acad Sci USA 77: 4132–4136

    PubMed  Google Scholar 

  47. Mandel N (1994) Crystal-membrane interaction in kidney stone disease. J Am Soc Nephrol 5: S37-S45

    PubMed  Google Scholar 

  48. Mandel N, Riese R (1991) Crystal-cell interactions: crystal binding to rat renal papillary tip collecting duct cells in culture. Am J Kidney Dis 17: 402–406

    PubMed  Google Scholar 

  49. Mandell I, Krauss E, Millan JC (1980) Oxalate-induced acute renal failure in Crohn's disease. Am J Med 69: 628–632

    PubMed  Google Scholar 

  50. Menon M, Koul H (1992) Calcium oxalate nephrolithiasis. J Clin Endocrin Metab 74: 703–707

    Google Scholar 

  51. Morgenroth K, Backmann R, Blaschke R (1968) On the formation of deposits of calcium oxalate in the human kidney in oxalosis. Beitr Path Anat 136: 454

    Google Scholar 

  52. Parsons CL, Stauffer C, Schmidt JD (1980) Bladder-surface glycosamino glycans: an efficient mechanism of environmental adaptation. Science 208: 605

    PubMed  Google Scholar 

  53. Rabito CA (1986) Sodium cotransport processes in renal epithelial cell lines. Min Electrol Metab 12: 32–41

    Google Scholar 

  54. Riese RJ, Riese JW, Kleinman JG, Wiesner JH, Mandel GS, Mandel N (1988) Specificity in calcium oxalate adherence to papillary epithelial cells in culture. Am J Physiol 255: F1025-F1032

    PubMed  Google Scholar 

  55. Riese RJ, Mandel NS, Wiessner JH, Mandel GS, Becker CG, Kleiman JG (1992) Cell polarity and calcium oxalate crystal adherence to collecting duct cells. Am J Physiol 262: F177-F184

    PubMed  Google Scholar 

  56. Robertson WG, Peacock M (1980) The cause of idiopathic calcium stone disease: hypercalciuria or hyperoxaluria? Nephron 26: 105–110

    PubMed  Google Scholar 

  57. Robertson WG, Peacock M, Heyburn PJ, Marshall DH, Clark PB (1979) Risk factors in calcium stone disease of the urinary tract. Brit J Urol 50: 449–454

    Google Scholar 

  58. Saxon A, Busch GJ, Merrill JP, Franco V, Wilson RE (1974) Renal transplantation in primary hyperoxaluria. Arch Intern Med 133: 464–467

    PubMed  Google Scholar 

  59. Scheid C, Koul H, Kennington L, Hill WA, Luber-Narod J, Jonassen J, Honeyman T, Menon M (1995) Oxalate-induced damage to renal tubular cells. Scanning Microsc 9: 1097–1107

    PubMed  Google Scholar 

  60. Scheid C, Koul H, Hill WA, Luber-Narod J, Kennington L, Honeyman T, Jonassen J, Menon M (1996) Oxalate-toxicity in LLC-PKI cells: Role of free radicals. Kidney Int 49: 413–419

    PubMed  Google Scholar 

  61. Scheid C, Koul H, Hill WA, Luber-Narod J, Jonassen J, Honeyman T, Kennington L, Kohli R, Hodapp J, Ayvazian P, Menon M (1996) Oxalate-toxicity in LLC-PKI cells, a line of renal epithelial cells. J Urol 155: 1112–1116

    PubMed  Google Scholar 

  62. Senekjian HO, Weinman EJ (1982) Oxalate transport by proximal tubule of the rabbit kidney. Am J Physiol 43: F271-F275

    Google Scholar 

  63. Simons K, Fuller SD (1985) Cell surface polarity in epithelia. Ann Rev Cell Biol 1: 243–288

    PubMed  Google Scholar 

  64. Sutton RAL, Walker VR (1994) Enteric and mild hyperoxaluria. Min Electr Metab 20: 352

    Google Scholar 

  65. Ullrich KJ (1994) Specificity of transporters for ‘organic anions’ and ‘organics cations’ in the kidney. Biochem Biophys Acta 1197: 45–62

    PubMed  Google Scholar 

  66. Valentich JD (1981) Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule. Ann NY Ac Sci 384-403

  67. Verkoelen CF, Romijn JC (1995) Oxalate transport and calcium oxalate renal stone disease. Urol Res 24: 183–191

    Google Scholar 

  68. Verkoelen CF, Romijn JC, Bruijn WC de, Boevé ER, Cao LC, Schröder FH (1993) Absence of a transcellular oxalate transport mechanism in LLC-PKI and MDCK cells cultured on porous supports. Scann Microsc 3: 1031–1040

    Google Scholar 

  69. Verkoelen CF, Romijn JC, Bruijn WC de, Boevb ER, Cao LC, Schröder FH (1995) Association of calcium oxalate monohydrate crystals with MDCK cells. Kidney Int 48: 129–138

    PubMed  Google Scholar 

  70. Verkoelen CF, Romijn JC, Cao LC, Boevé ER, Bruijn WC de, Schröder FH (1995) Crystal-cell interaction inhibition by polysaccharides. J Urol 155: 749–752

    Google Scholar 

  71. Verkoelen CF, van der Boom BG, Romijn JC, Schröder FH (1996) Cell density dependent calcium oxalate crystal binding to sulphated proteins at the surface of MDCK cells. In: CYC Pak, MI Resnick, GM Preminger (eds) Urolithiasis, Dallas, Texas, pp 208–210

    Google Scholar 

  72. Verkoelen CF, Romijn JC, Boevé ER, Schröder FH (1996) Cell cultures as a model in the study of nephrolithiasis. It J Miner Electrolyte Metab 10(2): 57–65

    Google Scholar 

  73. Wandzilak TR, Williams HE (1990) The hyperoxaluric syndromes. Endocrinol Metab Clin North Am 19: 851–865

    PubMed  Google Scholar 

  74. Wandzilak TR, Calo L, Borsatti, Williams HE (1992) Oxalate transport in cultured porcine renal epithelial cells. Urol Res 20: 341–345

    PubMed  Google Scholar 

  75. Wang T, Giebisch G, Aronson PS (1992) Effects of formate and oxalate on volume absorption in rat proximal tubule. Am J Physiol 263: F37

    PubMed  Google Scholar 

  76. Wang T, Agulian SK, Giebisch G, Aronson P (1993) Effects of formate and oxalate on chloride absorption in rat distal tubule. Am J Physiol 264: F730

    PubMed  Google Scholar 

  77. Wang T, Egbert AL, Abbiati T, Aronson PS, Giebisch G (1996) Mechanisms of stimulation of proximal tubule chloride transport by formate and oxalate. Am J Physiol 271: F446-F450

    PubMed  Google Scholar 

  78. Wareing M, Green R (1994) Effects of formate and oxalate on fluid reabsorption from the proximal convoluted tubule of the anaesthesized rat. J Physiol 447: 347

    Google Scholar 

  79. Weinman EJ, Frankfurt SJ, Ince A, Sansom S (1978) Renal tubular transport of organic acids. Studies with oxalate and para-aminohippurate in the rat. J Clin Invest 61: 801–806

    PubMed  Google Scholar 

  80. Wharton R, D'agati V, Magun AM, Whitlock R, Kunis CL, Appel GB (1990) Acute detoriation of renal function associated with enteric hyperoxaluria. Clin Nephrol 34: 116–121

    PubMed  Google Scholar 

  81. Wiessner JH, Kleinman JG, Blumenthal SS, Garancis JC, Mandel GS, Mandel NS (1987) Calcium oxalate crystal interaction with rat renal inner papillary collecting tubule cells. J Urol 138: 640–643

    PubMed  Google Scholar 

  82. Williams AW, Wilson DM (1990) Dietary intake, absorption, metabolism and excretion of oxalate. Sem Nephrol 10: 2–8

    Google Scholar 

  83. Williams HE, Wandzilak TR (1989) Oxalate synthesis, transport and the hyperoxaluric syndromes. J Urol 141: 742–747

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl F. Verkoelen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkoelen, C.F., van der Boom, B.G., Schröder, F.H. et al. Cell cultures and nephrolithiasis. World J Urol 15, 229–235 (1997). https://doi.org/10.1007/BF01367660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01367660

Keywords

Navigation