Skip to main content
Log in

Unsteady pressure waves and shock waves in elastic tubes containing bubbly air-water mixtures

Zur Ausbreitung von Druck- und Stoßwellen in instationären Blasen-Flüssigkeitsströmungen durch elastische Leitungen

  • Contributed papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The flow of a two-phase fluid through elastic tubes is more complex than that of a single phase fluid. The mathematical model is based on an one-dimensional approach to the flow of a liquid-gas mixture. The one-dimensional equations for transient two-phase flow through elastic tubes are a system of nonlinear hyperbolic partial differential equations if the bubbles and the liquid particles move with the same velocity. Included in the model are the effects of wall elasticity, compressibility of the gas and the liquid, the surface tension and the variable area change. The propagation of finite pressure waves and shock waves in a liquid containing gas bubbles has been investigated. The results show a differently strong influence of the parameters on the wave propagation speed and on the shock wave relations.

Zusammenfassung

Es ist bekannt, daß bei der mathematischen Beschreibung einer Zweiphasenströmung insofern Schwierigkeiten auftreten können, als unter bestimmten Voraussetzungen sowohl reelle als auch komplexe charakteristische Richtungen auftreten können. Für den Fall gleicher Geschwindigkeiten von Blasen und Flüssigkeit erhält man aus den instationären Gleichungen ein nichtlineares hyperbolisches Differentialgleichungssystem. Berücksichtigt werden die Elastizität der Wandungen, die Kompressibilität des Gases und der Flüssigkeit sowie die Oberflächenspannung. Wellenausbreitungsgeschwindigkeiten und Stoßrelationen werden angegeben. Die Resultate zeigen einen unterschiedlich starken Einfluß der verschiedenen Parameter auf die Wellenaus-breitungsgeschwindigkeit und die Stoßrelationen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soo, S. L.: Fluid dynamics of multiphase systems. Waltham, Mass.: Blaisdell 1967.

    Google Scholar 

  2. Ishii, M.: Thermo-fluid dynamics theory of two-phase flow. V. Collection de la Direction des Etudes et Recherches d'Electricté de France, Eyrolles, 1975.

  3. Wallis, G. B.: One dimensional two-phase flow. McGraw-Hill 1969.

  4. Lyczkowski, R. W., Gidaspow, D., Solbrig, C. W., Hughes, E. D.: Characteristics and stability analyses of transient one-dimensional two-phase flow equations and their finite difference approximations. ASME Paper 75-WA/HT-23 (1975).

  5. Prosperetti, A., van Wijngaarden, L.: On the characteristics of the equations of motion for a bubbly flow and the related problem of critical flow. Journ. of Engineering Math.10, 153–162 (1976).

    Google Scholar 

  6. van Wijngaarden, L.: Heat Mass Transfer6, 637 (1972).

    Google Scholar 

  7. Kranenburg, C.: Gas release during transient cavitation in pipes. Journ. of the Hydraulics Div.HY 10, 1383–1398 (1974).

    Google Scholar 

  8. Martin, C. S., Padmanabhan, M., Wiggert, D. C.: Pressure wave propagation in two-phase bubbly air-water mixtures. Proc. Second Intern. Conf. on pressure surges, London,C1, 1–15 (1976).

    Google Scholar 

  9. Wiggert, D. C., Sundquist, M. J.: The effect of gaseous cavitation on fluid transients. Journ. of Fluids Eng.101, 79–86 (1979).

    Google Scholar 

  10. Tullis, J. P., Streeter, V. L., Wylie, E. B.: Waterhammer analysis with air release. Proc. Second Intern. Conf. on Pressure Surges, BHRA Fluid Eng., Cranfield, Bedford, England, 1976.

  11. Henry, R. E., Grolmes, M. A., Fauske, H. K.: Propagation velocity of pressure waves in gas-liquid mixtures. In: Cocurrent Gas-Liquid Flow (Rhodes, E., Scott, D. S., eds.), pp. 1–18, 1969.

  12. Henry, R. E., Grolmes, M. A., Fauske, H. K.: Pressure-pulse propagation in two-phase one- and two-component mixtures. Argonne National Laboratory Report, ANL-7792, 86 (1971).

    Google Scholar 

  13. Martin, C. S.: Pressure pulse propagation in two-component slug flow. Journ. of Fluids Eng.101, 44–52 (1979).

    Google Scholar 

  14. Padmanabhan, M., Ames, W. F., Martin, C. S.: Numerical analysis of pressure transsients in bubbly two-phase mixtures by explicit-implicit methods. Journ. of Engineering Math.12, 83–93 (1978).

    Google Scholar 

  15. Macpherson, J. D.: The effect of gas bubbles on sound propagation in water. Proc. Phys. Soc. (London)B 70, 35, 85–92 (1957).

    Google Scholar 

  16. Campbell, I. J., Pitcher, A. S.: Shock waves in a liquid containing gas bubbles. Proc. Roy. Soc.A 243, 536–545 (1958).

    Google Scholar 

  17. Crespo, A.: Sound and shock waves in liquids containing bubbles. The Physics of Fluids12, 2274–2282 (1969).

    Google Scholar 

  18. van Wijngaarden, L.: On the structure of shock waves in liquid-bubble mixtures. Appl. Sci. Res.22, 366–381 (1970).

    Google Scholar 

  19. van Wijngaarden, L.: One-dimensional flow of liquids containing small gas bubbles. Ann. Rev. Fluid Mech.4, 369–396 (1972).

    Google Scholar 

  20. Noordzij, L., van Wijngaarden, L.: Relaxation effects, caused by relative motion, on shock waves in gas-bubble/liquid mixtures. Journ. Fluid Mech.66, 115–143 (1974).

    Google Scholar 

  21. Noordzij, L.: Proc. IUTAM Symp. on Non-steady Flow of Water at High Speeds (Sedov, L. I., Yu-Stepanov, G., eds.), p. 369. Moscow: Nauka 1973.

    Google Scholar 

  22. Wendroff, B.: Shock propagation in variable area ducts with phase changes: an extension of Chisnell's method. Journ. of Engineering Math.11, 273–287 (1977).

    Google Scholar 

  23. Rath, H. J.: Zum Einfluß der Kompressibilität des Fluids bei sphärisch schwingenden Gasblasen in Flüssigkeiten. Ingenieur-Archiv47, 383–390 (1978).

    Google Scholar 

  24. Rath, H. J.: Über nichtlineare Schwingungen sphärisch schwingender Gasblasen in Flüssigkeiten unter Berücksichtigung der Kompressibilität des Fluides. Zeitschr. für angew. Mathem. und Physik30, 627–635 (1979).

    Google Scholar 

  25. Rath, H. J.: Zur translatorischen Bewegung einer nichtlinear schwingenden Gasblase in einer kompressiblen Flüssigkeit in Anwesenheit eines inhomogenen Ultraschallfeldes. Acustica44, 148–155 (1980).

    Google Scholar 

  26. Rath, H. J.: The influence of an inhomogeneous sound field on the translational motion and nonlinear radial oscillation of a cavitation gas bubble in a compressible liquid. Mech. Res. Com.6, 209–215 (1979).

    Google Scholar 

  27. Knapp, R. T., Daily, J. W., Hammit, F. G.: Cavitation. McGraw-Hill 1970.

  28. Rath, H. J.: Free and forced oscillations of spherical gas bubbles and their translational motion in a compressible liquid. In: Cavitation and Inhomogeneities in underwater acoustics (Lauterborn, W., ed.). Berlin-Heidelberg-New York: Springer 1980.

    Google Scholar 

  29. Teipel, I.: Nichtlineare Wellenausbreitungsvorgänge in elastischen Leitungen. Acta Mechanica16, 93–106 (1973).

    Google Scholar 

  30. Rath, H. J.: Ein Beitrag zur Berechnung einer peristaltischen Strömung in elastischen Leitungen. Acta Mechanica31, 1–12 (1978).

    Google Scholar 

  31. Rath, H. J., Teipel, I.: Der Fördereffekt in ventillosen elastischen Leitungen. Zeitschr. für angew. Mathem. und Physik29, 123–133 (1978).

    Google Scholar 

  32. Forsythe, G. E., Wasow, W. R.: Finite difference methods for partial differential equations. J. Wiley, 1960.

  33. Ames, W. F.: Nonlinear partial differential equations. Academic Press, 1967.

  34. Mallock, A.: The damping of sound by frothy fluids. Proc. Roy. Soc. (London)A 84, 391 (1910).

    Google Scholar 

  35. Karplus, H. B.: Propagation of pressure waves in a mixture of water and steam. Res. Develop. Rep. ARF-4132-12, Atomic Energy Commission, Chicago3 (1961).

    Google Scholar 

  36. Barclay, F. J., Ledwedge, T. J., Cornfield, G. C.: Some experiments on sonic velocity in two-phase one-component mixtures and some thoughts on the nature of two-phase critical flow. Proc. Inst. Mech. Eng.184 (3C), 185 (1969).

    Google Scholar 

  37. McWilliam, D., Duggins, R. K.: Speed of sound in bubbly liquids. Proc. Inst. Mech. Engrs.184 (3C), 102–107 (1969).

    Google Scholar 

  38. Hsieh, D. Y., Plesset, M. S.: On the propagation of sound in a liquid containing gas bubbles. The Physics of Fluids4, 972–975 (1961).

    Google Scholar 

  39. Kiefer, S. W.: Sound speed in liquid-gas mixtures: water-air and water-steam. Journ. of Geophysical Res.82, 2895–2904 (1977).

    Google Scholar 

  40. Moens, A. I.: Die Pulskurve. Leiden: Brill 1878.

    Google Scholar 

  41. Korteweg, D. J.: deÜber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Rohren. Annalen der Physik und Chemie3, 525–542 (1878).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 13 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rath, H.J. Unsteady pressure waves and shock waves in elastic tubes containing bubbly air-water mixtures. Acta Mechanica 38, 1–17 (1981). https://doi.org/10.1007/BF01351459

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01351459

Keywords

Navigation