Skip to main content
Log in

Chemical composition of midwater fishes as a function of depth of occurrence off the Hawaiian Islands: Food availability as a selective factor?

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The variation with depth in water, lipid, protein, carbon and nitrogen contents (% wet weight) of 42 species of midwater fishes, collected in November 1976 off the west coast of Oahu in the Hawaiian Archipelago, was measured. The Hawaiian fishes show significant relationships between these components and depth of occurrence. The slopes of these relationships are not significantly different from those reported for midwater fishes from off California, USA. However, the fishes from Hawaii have significantly lower lipid levels and higher protein levels than do the species from off California. The deep-living Hawaiian species (500 m and deeper) have significantly lower lipid (% wet weight), but there is no significant difference in protein (% wet weight). The difference in lipid contents at all depths appears to be an evolved characteristic, with the greater lipid levels off California being selected for by greater spatial and temporal variation in the food supply for these fishes off the California coast than off Hawaii. The higher protein contents in the shallow-living Hawaiian fishes appear to reflect greater muscle power selected for in these fishes by the greater water clarity, and therefore greater “reactive distances”, in the surface layers off Hawaii. These conclusions support the general hypothesis that the lower protein contents of bathypelagic fishes are not directly selected by food limitation at depth, but rather result from the relaxation of selection for rapid-swimming abilities at greater depths due to the great reduction at greater depths in the distance over which visual predator-prey interactions can take place. The lower lipid levels in the deeper-living species are apparently made possible by the reduced metabolic rates of these species which reduces their need for energy stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bailey, T. G. (1984). Distribution, abundance, and aspects of the life histories of midwater fishes from three regions of the eastern North Pacific. Ph. d. dissertation. University of California, Santa Barbara

    Google Scholar 

  • Bailey, T. G., Robison, B. H. (1986). Food availability as a selective factor on the chemical compositions of midwater fishes in the eastern North Pacific. Mar. Biol. 91: 131–141

    Google Scholar 

  • Bennett, A. L. (1984). Thermal dependence of muscle function. Am. J. Physiol. 247: R217-R229

    Google Scholar 

  • Bienfang, P. K., Szyper, J. P., Okamoto, M. Y., Nada, E. K. (1984). Temporal and spatial variability of phytoplankton in a subtropical ecosystem. Limnol. Oceanogr. 29: 527–539

    Google Scholar 

  • Brett, J. R., Groves, T. D. (1979). Physiological energetics. In. Hoar, W. S., Randall, D. J. (eds.) Fish physiology. Vol. VIII. Academic Press, New York, p. 279–351

    Google Scholar 

  • Childress, J. J., Mickel, T. J. (1985). Metabolic rates of animals from the hydrothermal vents and other deep-sea habitats. Bull. biol. Soc. Wash. 6: 249–260

    Google Scholar 

  • Childress, J. J., Nygaard, M. H. (1973). The chemical composition of midwater fishes as a function of depth of occurrence off Southern California. Deep-Sea Res. 20: 1093–1109

    Google Scholar 

  • Childress, J. J., Nygaard, M. (H.) (1974). Chemical composition and buoyancy of midwater crustaceans as function of depth of occurrence off Southern California. Mar. Biol. 27: 225–238

    Google Scholar 

  • Childress, J. J., Price, M. H. (1978). Growth rate of the bathypelagic crustaceanGnathophausia ingens (Mysidacea: Lophogastridae). I. Dimensional growth and population structure. Mar. Biol. 50: 47–62

    Google Scholar 

  • Childress, J. J., Price, M. H. (1983). Growth rate of the bathypelagic crustaceanGnathophausia ingens (Mysidacea: Lophogastridae). II. Accumulation of material and energy. Mar. Biol. 76: 165–177

    Google Scholar 

  • Childress, J. J., Somero, G. N. (1979). Depth-related enzymatic activities in muscle, brain and heart of deep-living pelagic marine teleosts. Mar. Biol. 52: 273–283

    Google Scholar 

  • Childress, J. J., Somero, G. N. (1990). Metabolic scaling: a new perspective based on scaling of glycolytic enzyme activities. Am. Zool. 30: 161–163

    Google Scholar 

  • Childress, J. J., Taylor, S. M., Cailliet, G. M., Price, M. H. (1980). Patterns of growth, energy utilization and reproduction in some meso- and bathypelagic fishes off Southern California. Mar. Biol. 61: 27–40

    Google Scholar 

  • Clarke, A. (1983). Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr. mar. Biol. A. Rev. 21: 341–453

    Google Scholar 

  • Clarke, A. (1988). Seasonality in the Antarctic marine environment. Comp. Biochem. Physiol. 90 B: 461–474

    Google Scholar 

  • Clarke, A, Holmes, L. J. (1986). Lipid content and composition of some midwater crustaceans from the Southern Ocean. J. exp. mar. Biol. Ecol. 104: 31–51

    Google Scholar 

  • Clarke, T. A. (1973). Some aspects of the ecology of lanternfishes (Myctophidae) in the Pacific Ocean near Hawaii. Fish. Bull. U.S. 71: 401–434

    Google Scholar 

  • Clarke, T. A. (1974). Some aspects of the ecology of stomiatoid fishes in the Pacific Ocean near Hawaii. Fish. Bull. U.S. 72: 337–351

    Google Scholar 

  • Clarke, T. A. (1984). Fecundity and other aspects of reproductive effort in mesopelagic fishes from the North Central and Equatorial Pacific. Biol. Oceanogr. 3: 147–165

    Google Scholar 

  • Clarke, T. A., Wagner, P. J. (1976). Vertical distribution and other aspects of the ecology of certain mesopelagic fishes taken near Hawaii. Fish. Bull. U.S. 74: 635–645

    Google Scholar 

  • Cowles, D. C. (1987). Factors affecting the aerobic metabolism of midwater crustaceans. Ph. D. dissertation. University of California, Santa Barbara

    Google Scholar 

  • Cullen, J. J., Eppley, T. W. (1981). Chlorophyll maximum layers of the Southern California Bight and possible mechanisms of their formation and maintenance. Oceanol. Acta 4: 23–32

    Google Scholar 

  • Donnelly, J., Torres, J. J. (1988). Oxygen consumption of midwater fishes and crustaceans from the eastern Gulf of Mexico. Mar. Biol. 97: 483–494

    Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28: 350–356

    Google Scholar 

  • Folch, H., Lees, M., Stanley, G. H. S. (1956). A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem. 226: 497–509

    Google Scholar 

  • Games, P. A., Howell, J. F. (1976). Pairwise multiple comparison procedures with unequal n's and/or variances: a Monte Carlo study. J. educ. Statist. 1: 113–125

    Google Scholar 

  • Gilmartin, M., Revelante, N. (1974). The island mass effect on the phytoplankton and primary production of the Hawaiian islands. J. exp. mar. Biol. Ecol. 16: 181–204

    Google Scholar 

  • Griffiths, D. (1977). Caloric variation in Crustacea and other animals. J. Anim. Ecol. 46: 593–605

    Google Scholar 

  • Hayward, T. L. (1986). Variability in production and the role of disturbance in two pelagic ecosystems. In: Pierrot-Bults, A. C., van der Spoel, S., Zahuranec, B. J., Johnson, R. K. (eds.) Pelagic biogeography: proceedings of an international conference. UNESCO, Paris, p. 133–139

    Google Scholar 

  • Hayward, T. L., MacGowan, J. A. (1985). Spatial patterns of chlorophyll, primary production, macrozooplankton biomass and physical structure in the central North Pacific Ocean. J. Plankton Res. 7: 147–167

    Google Scholar 

  • Hayward, T. L., Venrick, E. L. (1982). Relation between surface chlorophyll, integrated chlorophyll and integrated primary production. Mar. Biol. 69: 247–252

    Google Scholar 

  • Hayward, T. L., Venrick, E. L., McGowan, J. A. (1983). Environmental heterogeneity and plankton community structure in the central North Pacific. J. mar. Res. 41: 711–729

    Google Scholar 

  • Kampa, E. M. (1970). Photoenvironment and sonic scattering. In: Farqhuar, G. B. (ed.) Proceedings of an international symposium on biological sound scattering in the ocean. Maury Center for Ocean Science, Department of the Navy, Washington, D.C., p. 51–59

    Google Scholar 

  • Lawrence, J. M. (1976). Patterns of lipid storage in postmetamorphic marine invertebrates. Am. Zool. 16: 747–762

    Google Scholar 

  • Lee, R. F., Hirota, J., Barnett, A. M. (1971). Distribution and importance of wax esters in marine copepods and other zooplankton. Deep-Sea Res. 18: 1147–1165

    Google Scholar 

  • Loeb, V. J., Smith, P. E., Moser, N. G. (1983). Ichthyoplankton and zooplankton abundance patterns in the California current area, 1975. CalCOFI Rep. 24: 109–131

    Google Scholar 

  • Lowry, O. H., Roseborough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. biol. Chem. 193: 265–275

    Google Scholar 

  • Love, R. M. (1970). The chemical biology of fishes. Academic Press, New York

    Google Scholar 

  • Love, R. M. (1980). The chemical biology of fishes. Vol. 2. Advances 1968–1977. Academic Press, New York

    Google Scholar 

  • Maynard, S. D., Riggs, F. V., Walters, J. F. (1975). Mesopelagic micronekton in Hawaiian waters: faunal composition, standing stock and diel vertical migration. Fish. Bull. U.S. 73: 726–736

    Google Scholar 

  • McGowan, J. A. (1986). The biogeography of pelagic ecosystems. In: Pierrot-Bults, A. C., van der Spoel, S., Zahuranec, B. J., Johnson, R. K. (eds.) Pelagic biogeography: proceedings of an international conference. UNESCO, Paris, p. 191–200

    Google Scholar 

  • McGowan, J. A., Williams, P. H. (1973). Oceanic habitat differences in the North Pacific. J. exp. mar. Biol. Ecol. 12: 187–217

    Google Scholar 

  • Nakamura, E. L. (1967). Abundance and distribution of zooplankton in Hawaiian waters, 1955–56. Spec. scient. Rep. U.S. Fish Wildl. Serv. (Fish.) 544: 1–37

    Google Scholar 

  • Norrbin, F., Båmstedt, U. (1984). Energy contents in benthic and planktonic invertebrates of Kosterfjorden, Sweden. A comparison of energetic strategies in marine organism groups. Ophelia 23: 47–64

    Google Scholar 

  • Owen, R. W., Jr. (1974). Distribution of primary production, plant pigments, and Secchi depth in the California Current region, 1969. Calf. coop. ocean. Fish. Invest. Atlas 20: 98–117

    Google Scholar 

  • Reid, J. L., Jr. (1962). On circulation, phosphate-phosphorus content, and zooplankton volumes in the upper part of the Pacific Ocean. Limnol. Oceanogr. 7: 287–306

    Google Scholar 

  • Siebenaller, J. F., Yancey, P. H (1984). Protein composition of white skeletal muscle from mesopelagic fishes having different water and protein contents. Mar. Biol. 78: 129–137

    Google Scholar 

  • Shomura, R. S., Nakamura, E. I. (1969). Variations in marine zooplankton from a single locality in Hawaiian waters. Fish. Bull. U.S. 68: 87–100

    Google Scholar 

  • Slobodkin, L. B., Richman, S. (1961). Calories/gm in species of animals. Nature, Lond. 191: p. 299

    Google Scholar 

  • Smith, K. L., Jr., Laver, M. B. (1981). Respiration of the bathypelagic fishCyclothone acclinidens. Mar. Biol. 61: 261–266

    Google Scholar 

  • Smith, P. E., Eppley, R. W. (1982). Primary production and the anchovy population in the Southern California Bight: comparison of time series. Limnol. Oceanogr. 27: 1–17

    Google Scholar 

  • Smith, R.C., Bidigare, R. R., Prézelin, B. B., Baker, K. S., Brooks, J. M. (1987). Optical characterization of primary productivity across a coastal front. Mar. Biol. 96: 575–591

    Google Scholar 

  • Smoker, W., Pearcy, W. G. (1970). Growth and reproduction of the lanternfishStenobrachius leucopsaurus. J. Fish. Res. Bd Can. 27: 1265–1275

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd ed.W. H. Freeman & Co., San Francisco

    Google Scholar 

  • Somero, G. N., Childress, J. J. (1980). A violation of the metabolism-size scaling paradigm: activities of glycolytic enzymes in muscle increase in larger-size fish. Physiol. Zoöl. 53: 322–337

    Google Scholar 

  • Somero, G. N., Childress, J. J. (1990). Scaling of ATP-supplying enzymes, myofibrillar proteins, and buffering capacity in fish muscle: relation to locomotory habit. J exp. Biol. 149: 319–333

    Google Scholar 

  • Stickney, D. G., Torres, J. J. (1989). Proximate composition and energy content of mesopelagic fishes from the eastern Gulf of Mexico. Mar. Biol. 103: 13–24

    Google Scholar 

  • Torres, J. J., Belman, B. W., Childress, J. J. (1979). Oxygen consumption rates of midwater fishes as a function of depth of occurrence. Deep-Sea Res. 26A: 185–197

    Google Scholar 

  • Torres, J. J., Somero, G. N. (1988). Metabolism, enzymic activities and cold adaptation in Antarctic mesopelagic fishes. Mar. Biol. 98: 169–180

    Google Scholar 

  • Young, R. E., Kampa, E. M., Maynard, S. D., Mencher, F. M., Roper, C. F. E. (1980). Counterillumination and the upper depth limits of midwater animals. Deep-Sea Res. 27A: 671–691

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Childress, J.J., Price, M.H., Favuzzi, J. et al. Chemical composition of midwater fishes as a function of depth of occurrence off the Hawaiian Islands: Food availability as a selective factor?. Mar. Biol. 105, 235–246 (1990). https://doi.org/10.1007/BF01344292

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344292

Keywords

Navigation