Skip to main content
Log in

Mode-coupling theory for the dynamics of tunnelling systems in dielectrics

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A mode-coupling theory (MCT) is presented for the spin-boson model with a spectral density which accounts for a heat bath made up of lattice vibrations of a dielectric solid (superohmic dissipation). A usual decoupling approximation provides a set of non-linear integral equations which are solved both numerically by iteration on a computer and analytically by means of a frequency dependent ansatz for the memory functions. There is a transition to incoherent motion at a temperatureT * where the bare two-level energy is equal to the damping rate, in contradiction to results obtained previously from a path integral formulation. The discrepancy arises since in the MCT the relevant self-energy function does not exhibit a 1/z-pole atz=0. For tunnelling systems in dielectrics this yields a new relaxation mechanism due to incoherent tunnelling: the present results might require to modify some of the basic assumptions of the standard tunnelling model for dielectric glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caldeira, A.O., Leggett, A.J.: Ann. Phys. (N.Y.)149, 374 (1983);153, 445 (1983); Phys. Rev. Lett.46, 211 (1981)

    Google Scholar 

  2. Dorsey, A.T., Fisher, M.P.A., Wartak, M.S.: Phys. Rev. A33, 1117 (1986)

    Google Scholar 

  3. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Rev. Mod. Phys.59, 1 (1987)

    Google Scholar 

  4. Weiss, U.: Quantum dissipative dynamics. Series in Modern Condensed Matter Physics, Vol. 2. Singapore: World Scientific 1993

    Google Scholar 

  5. Görlich, R., Weiss, U.: Phys. Rev. B38, 5254 (1988)

    Google Scholar 

  6. Weiss, U., Grabert, H., Linkwitz, S.: J. Low. Temp. Phys.68, 213 (1987)

    Google Scholar 

  7. Weiss, U., Grabert, H., Hänggi, P., Riseborough, P.: Phys. Rev. B35, 9535 (1987)

    Google Scholar 

  8. Weiss, U., Wollensack, M.: Phys. Rev. Lett.62, 1663 (1989)

    Google Scholar 

  9. Görlich, R., Sassetti, M., Weiss, U.: Europhys. Lett.10, 507 (1989)

    Google Scholar 

  10. Zwerger, W.: Z. Phys. B53, (1983); ibid54, 87 (1983)

  11. Grabert, H., Dattagupta, S., Jung, R.: J. Phys. C1, 1405 (1989)

    Google Scholar 

  12. Egger, R., Weiss, U.: Z. Phys. B89, 97 (1992)

    Google Scholar 

  13. Beck, R., Götze, W., Preloysek, P.: Phys. Rev. A20, 1140 (1979)

    Google Scholar 

  14. Götze, W., Vujicic, G.M.: Phys. Rev. B38, 9398 (1988)

    Google Scholar 

  15. DeRaedt, B., DeRaedt, H.: Phys. Rev. B29, 5325 (1984)

    Google Scholar 

  16. Bray, A.J., Moore, N.A.: Phys. Rev. Lett.49, 1545 (1982)

    Google Scholar 

  17. Chakravarty, S.: Phys. Rev. Lett.49, 681 (1982)

    Google Scholar 

  18. Mori, H.: Progr. Theor. Phys.33, 127 (1965); Zwanzig, R.: J. Chem. Phys.33, 1338 (1960)

    Google Scholar 

  19. Forster, D.: Hydrodynamic fluctuations, broken symmetry and correlation functions. Reading, Mass: Benjamin Cummings 1975; Fick, E., Sauermann, G.: Quantenstatistik dynamischer Prozesse, Bd. IIa. Frankfurt: Deutsch 1986

    Google Scholar 

  20. Kawasaki, K.: Phys. Rev.150, 291 (1960)

    Google Scholar 

  21. Götze, W.: In: Les Houches 1989: Liquids, freezings and the glass transition

  22. Würger, A.: Z. Phys. B85, 93 (1991)

    Google Scholar 

  23. Götze, W., Sjögren, L.: J. Phys. C17, 5759 (1984)

    Google Scholar 

  24. Grossmann, S.: Phys. Rev. A17, 1123 (1978)

    Google Scholar 

  25. Würger, A.: Z. Phys. B94, 173 (1994)

    Google Scholar 

  26. Piché, L., Maynard, R., Hunklinger, S., Jäckle, J.: Phys. Rev. Lett.32, 1426 (1974)

    Google Scholar 

  27. Jäckle, J., Piché, L., Arnold, W., Hunklinger, S.: J. Non-Cryst. Solids20, 365 (1976)

    Google Scholar 

  28. Hunklinger, S., Arnold, W.. In: Physical acoustics, vol. 12. Thurston, R.N., Mason W.P. (eds.) New York: Academic Press 1976

    Google Scholar 

  29. Hunklinger, S., Raychaudhuri, A.K.: In: Progress in low temperature physics, vol. IX. Brewer, D.F. (ed.) Amsterdam: Elsevier 1986

    Google Scholar 

  30. Anderson, P.W., Halperin, B.I., Varma, C.: Philos. Mag.25, 1 (1972)

    Google Scholar 

  31. Philips, W.A.: J. Low. Temp. Phys.7, 351 (1972)

    Google Scholar 

  32. Jäckle, J.: Z. Phys.257, 212 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neu, P., Würger, A. Mode-coupling theory for the dynamics of tunnelling systems in dielectrics. Z. Physik B - Condensed Matter 95, 385–395 (1994). https://doi.org/10.1007/BF01343967

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01343967

PACS

Navigation