Skip to main content
Log in

Viscoelastic properties of polymerlike reverse micelles

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A dramatic increase in the viscosity of reverse micellar solutions of lecithin in a variety of organic solvents of up to a factor of 106 upon the addition of a small amount of water can be observed. The formation of viscoelastic solutions can be explained by a water-induced aggregation of lecithin molecules into flexible cylindrical reverse micelles and the subsequent formation of a transient network of entangled micelles. The viscoelastic properties of these solutions are characterized as a function of water content and temperature for different organic solvents by means of dynamic shear viscosity measurements. The results are interpreted by making analogies to the behavior of semidilute polymer solutions and living polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scartazzini R, Luisi PL (1988) J Phys Chem 92:829

    Google Scholar 

  2. Schurtenberger P, Scartazzini R, Magid LJ, Leser ME, Luisi PL (1989) submitted to J Phys Chem

  3. De Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell Univ Press, Ithaca, NY

    Google Scholar 

  4. Ferry JD (1980) Viscoelastic Properties of Polymers. J Wiley & Sons, New York

    Google Scholar 

  5. Candau SJ, Hirsh E, Zana R, Adam M (1988) J Colloid Interface Sci 122:430

    Google Scholar 

  6. Daoud M, Cotton JP, Farnoux B, Jannink G, Sarma G, Benoit H, Duplessix R, Picot C, De Gennes PG (1975) Macromolecules 8:804

    Google Scholar 

  7. Brown W, Mortensen K (1988) Macromolecules 21:420

    Google Scholar 

  8. Wiltzius P, Haller HR, Cannell DS, Schaefer DW (1983) Phys Rev Lett 51:1183

    Google Scholar 

  9. Adam M, Delsanti M (1977) Macromolecules 10:1229

    Google Scholar 

  10. Wiltzius P, Haller HR, Cannell DS, Schaefer DW (1984) Phys Rev Lett 53:834

    Google Scholar 

  11. Cates ME (1988) J Phys France 49:1593

    Google Scholar 

  12. Israelachvili JN (1985) In: Degiorgio V, Corti M (eds) Proceedings of the International School of Physics “Enrico Fermi”. Physics of Amphiphiles, Micelles, Vesicles and Microemulsions. North Holland, Amsterdam, p 24

  13. Blankshtein D, Thurston G, Benedek GB (1986) J Chem Phys 85:7268

    Google Scholar 

  14. Safran S, Turkevitch LA, Pincus P (1984) J Phys Lett 45:L-69

    Google Scholar 

  15. Missel PJ, Mazer NA, Benedek GB, Young CY, Carey MC (1980) J Phys Chem 84:1044

    Google Scholar 

  16. Sheu EY, Chen S-H (1988) J Phys Chem 92:4466

    Google Scholar 

  17. Tausk RJM, Oudshoom C, Overbeek J Th G (1974) Biophys Chem 2:53

    Google Scholar 

  18. Messager R, Ott A, Chatenay D, Urbach W, Langevin D (1988) Phys Rev Lett 60:1410

    Google Scholar 

  19. Ying Q, Chu B (1987) Macromolecules 20:362

    Google Scholar 

  20. Cates ME (1987) Macromolecules 20:2289

    Google Scholar 

  21. Rehage H, Hoffmann H (1988) J Phys Chem 92:4712

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. J. Meissner on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schurtenberger, P., Scartazzini, R. & Luisi, P.L. Viscoelastic properties of polymerlike reverse micelles. Rheol Acta 28, 372–381 (1989). https://doi.org/10.1007/BF01336804

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01336804

Key words

Navigation