Skip to main content
Log in

A “constrained-chain” network model for viscoelastic fluids

Part II: Comparison with experimental results

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A specific case of the general “constrained-chain” strain-dependent integral viscoelastic model is evaluated with steady simple shear data, stress growth and relaxation data, and steady elongational viscosity data. The model is qualitatively correct and quantitatively reasonable in its predictions and, on balance, compares favourably with strain-dependent, strain-rate-dependent, and stress-dependent models from the current literature. Specific model comparisons are made to demonstrate the effect of the “constrained-chain” or finite extensibility feature of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan, T.W., I.F. Macdonald, Rheol. Acta22 354 (1983).

    Google Scholar 

  2. Crossland, A.H., B.M.E. van der Hoff, J. Macro. Sci.-Chem.A10, 825 (1976).

    Google Scholar 

  3. Tanner, R.I., J.M. Simmons, Chem. Eng. Sci.22, 1803 (1967).

    Google Scholar 

  4. Tanner, R.I., A.I.Ch.E.J.15, 177 (1969).

    Google Scholar 

  5. Lodge, A.S., Elastic Liquids, Academic Press (New York, 1964).

    Google Scholar 

  6. Tanner, R.I., Trans. Soc. Rheol.,12, 155 (1968).

    Google Scholar 

  7. Macdonald, I.F., Rheol. Acta14, 899–905, 906–918 (1975).

    Google Scholar 

  8. Carreau, P.J., Trans. Soc. Rheol.,16, 99 (1972).

    Google Scholar 

  9. Carreau, P.J., I.F. Macdonald, R.B. Bird, Chem. Eng. Sci.,23, 901 (1968).

    Google Scholar 

  10. Ashare, E., Ph.D. Thesis, University of Wisconsin, Madison, Wisconsin, 1967.

  11. Macdonald, I.F., Ph.D. Thesis, University of Wisconsin, Madison, Wisconsin, 1968.

  12. Leppard, W., Ph.D. Thesis, University of Utah, Salt Lake City, Utah, 1974.

  13. Laun, H.M., Rheol. Acta17, 1 (1978).

    Google Scholar 

  14. Laun, H.M., H. Münstedt, Rheol. Acta17, 415 (1978).

    Google Scholar 

  15. Meissner, J., Rheol. Acta10, 230 (1971).

    Google Scholar 

  16. Carreau, P.J., Ph.D. Thesis, University of Wisconsin, Madison, Wisconsin, 1968.

  17. Yen, H.C., L.V. McIntire, Trans. Soc. Rheol.,16, 711 (1972).

    Google Scholar 

  18. Meissner, J., Trans. Soc. Rheol.,16, 405 (1972).

    Google Scholar 

  19. Library Subroutine, Watlib.,B.60, University of Waterloo Computing Centre.

  20. Huppler, J.D., E. Ashare, L.A. Holmes, Trans. Soc. Rheol.,11, 159 (1967).

    Google Scholar 

  21. Chang, K.T., Ph.D. Thesis, University of Illinois, Chicago, Illinois, 1974.

  22. Bird, R.B., P.J. Carreau, Chem. Eng. Sci.,23, 427 (1968).

    Google Scholar 

  23. Tanner, R.I., G. Williams, Trans. Soc. Rheol.,14, 19 (1970).

    Google Scholar 

  24. Yen, H.C., L.V. McIntire, Trans. Soc. Rheol.,18, 495 (1974).

    Google Scholar 

  25. Olabisi, C., M.C. Williams, Trans. Soc. Rheol.,16, 727 (1972).

    Google Scholar 

  26. Tanner, R.I., Trans. Soc. Rheol.,17, 365 (1973).

    Google Scholar 

  27. Keentok, M., R.I. Tanner, J. Rheol.,26, 301 (1982).

    Google Scholar 

  28. Chan, T.W., Ph.D. Thesis, University of Waterloo, Waterloo, Ontario (1982).

  29. Yamamoto, M., J. Phys. Soc., Japan,11, 413 (1956);12, 1148 (1957);13, 1200 (1958).

    Google Scholar 

  30. Bernstein, B., E.A. Kearsley, L.J. Zapas, Trans. Soc. Rheol.,9, 27 (1965).

    Google Scholar 

  31. Acierno, D., F.P. La Mantia, G. Marrucci, G. Titomanlio, J. Non-Newtonian Fluid Mech.,1, 125–146, 147–157 (1976).

    Google Scholar 

  32. Phan-Thien, N., J. Rheol.,22, 259 (1978).

    Google Scholar 

  33. Ballman, R.L., Rheol. Acta4, 137 (1965).

    Google Scholar 

  34. Vinogradov, G.V., V.D. Fikham, V.G. Radushkevich, Rheol. Acta11, 286 (1972).

    Google Scholar 

  35. Han, C.D., R.R. Lamonte, Trans. Soc. Rheol.,16, 447 (1972).

    Google Scholar 

  36. Acierno, D., J.N. Dalton, J.M. Rodriguez, J.L. White, J. Appl. Polym. Sci.,15, 2395 (1971).

    Google Scholar 

  37. Münstedt, H., J. Rheol.,24, 847 (1980).

    Google Scholar 

  38. Ide, Y., J.L. White, J. Appl. Polym. Sci.,22, 1061 (1978).

    Google Scholar 

  39. Cogswell, F.N., Trans. Soc. Rheol.,16, 383 (1972).

    Google Scholar 

  40. Tsang, W.K.W., Ph.D. Thesis, McGill University, Montreal, 1980.

  41. Phan-Thien, N., R.I. Tanner, J. Non-Newtonian Fluid Mech.,2, 353 (1977).

    Google Scholar 

  42. Graessley, W.W., Paper presented at the Society of Rheology Meeting, New York, March, 1977.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Alan H. Crossland whose “constrained-chain” theory of rubber elasticity provides the foundation for the work presented here. His untimely death at the age of 38 is a tragic loss for his family, for those of us who knew him as a colleague and for the field of polymer rheology which has lost a gifted researcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, T.W., Macdonald, I.F. A “constrained-chain” network model for viscoelastic fluids. Rheol Acta 22, 361–373 (1983). https://doi.org/10.1007/BF01333766

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01333766

Key words

Navigation